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ABSTRACT

Maintenance, a key element of Integrated Logistics Support, plays a very
vital role throughout an equipment/system planned life-cycle. Maintenance
costs contribute a major portion of the life cycle costs of an equipment or

system. Past historical records have shown that the cost associated with

system maintenance is immense and usually takes up a large portion of the

annual operating expenditure. Besides the costs, sound maintenance efforts

contribute to better operational availability and reliability of a system.

Therefore, the objective is to attain the proper balance of operations between

performance and effectiveness, and logistics support, which largely includes
maintenance, spares requirements, and the available budget. Adequate
maintenance is essential to ensure the effective and economical support of an
equipment or system. Therefore there is a need to design optimal maintenance

policies to maximize appropriate measures of system effectiveness. These can
be either to minimize operational and maintenance costs, to improve overall

system reliability or to maximize operational availability.

In this thesis, various maintenance scenarios are examined and the
corresponding optimal maintenance actions are planned to take place at
intervals chosen so as to maximize an appropriate measures of effectiveness.

Preventive maintenance policies are also planned so that the overall reliability

of the system is always kept above a specified minimum reliability level, while
either keeping the cost per unit time to a minimum or maximizing the
operational availability, subject to cost constraints.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this

research may not have been exercised for all cases of interest. While every

effort has been made, within the time available, to ensure that the programs

are free of computational and logic errors, they cannot be considered validated.

Any application of these programs without additional verification is at the risk

of the user.
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L INTRODUCTION

A. MAINTENANCE

Maintenance constitutes a series of actions to be taken to restore or retain

an equipment or system in an effective operational state. [Ref. 1].

Maintenance occurs at three levels:

* Organizational Maintenance.

0 Intermediate Maintenance.

e Depot Maintenance.

The Organizational Maintenance activity is performed by the ship's staff,

for frigates or equivalent, using the onboard spares, tools, test equipment, and

the documentation furnished. For smaller ships and patrol craft,

Organizational Maintenance is carried out with the assistance of the Squadron

Support Teams. Intermediate Maintenance is performed at fleet workshops,

while Depot Maintenance is carried out at the naval dockyard or by

commercial shipyards and firms.

Any equipment or system introduced into the service needs to be

maintained adequately so that it is readily available to perform a mission

successfully at an acceptable performance level. Besides that, maintenance
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helps to extend the useful life of the equipment/system and ensures the safety

of personnel using it.

Basically, maintenance can be broadly divided into two types:

* Preventive Maintenance.

* Corrective Maintenance,

Figure 1.1 shows the various maintenance forms.

SMAINTENANCE

simple planned minimal major
preventive overhaul repairs repairs
maintenance

Figure 1.1 The Forms of Maintenance

Preventive maintenance is scheduled maintenance that is organized and

carried out in accordance with the documentation and records at a

predetermined time following a predetermined plan. Preventive maintenance

is normally associated with maintenance that occurs when the system is still
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operating. The main aim of preventive maintenance actions is to improve the

overall system reliability and to avoid sudden or unexpected failures which

may be cata,'trophic. Preventive maintenance can be sub-divided into:

"* Simple Preventive Maintenance.

"* Complete Overhaul/Preventive Replacement.

Simple preventive maintenance actions usually consist of inspections,

adjustments, tuning, cleaning, lubrication, minor calibration, and replacement

of worn out components and parts before they actually fail. This type of

maintenance is usually performed at the Organizational Maintenance level and

often it does not affect the downtime of the equipment/system.(The downtime

for these maintenance actions is usually negligible).

Complete overhauls are carried out to bring the state of the deteriorating

system back to "as good as new condition", and to prevent major impending

failures. This type of maintenance is usually carried out at the Depot

Maintenance level during planned refit periods and it usually incurs some

significant downtime. Preventive replacements are carried out when the

overhaul is not economical or when the parts are non-repairable.

Cornective maintenance is the unscheduled maintenance carried out to

restore a failed system to its operating state. Corrective maintenance can be

subdivided into:

3



"* Minimal Repair.

"* Major Overhaul/Failure Replacement.

Minimal repairs are minor repairs or component replacements carried out

on failed components or assemblies that restore the system to its operational

state without significantly improving the overall condition of the system. This

type of maintenance is usually carried out at the Organizational Maintenance

level.

Major overhauls are carried out when the system experiences a sudden

major failure and the work has to be carried out at the Intermediate

Maintenance level or at the Depot Maintenance level. Failure replacement

usually occurs when the system is beyond economical repair or when the parts

are non-repairable.

B. MAINTENANCE POLICIES

Our main goal is to design a maintenance policy that will maximize

appropriate measures of system effectiveness; this can be either to minimize

operational and maintenance costs, to improve overall system reliability or to

maximize operational availability (uptime). The most relevant measure of

effectiveness used is to maximize a suitable measure of operational availability

subject to budget constraints. Ideally, we would like to carry out many

preventive maintenance and inspection routines to ensure that the system is

in an optimum operating condition, to avoid sudden and catastrophic failures
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and damage to the system, and also to prevent accidents which may be

detrimental to the people working in the vicinity. On the other hand, excessive

preventive maintenance actions may not only be unnecessarily costly, requiring

wany manhours but may actually prematurely ege equipment. Therefore, we

teed a balance or trade-off between two extremes. Our objective, then, is to

select an optimal maintenance policy for the particular equipment or system,

and to decide when to carry out the associated maintenance routines. Some

conceivable maintenance policies a:e the following.

"* No preventive maintenance and corrective maintenance is carried out.
The system is replaced at a fixed age. When the system fails before this
age it is replaced with a new one. This type of maintenance is normally
associated with low-level subsystems: items such as components, sealed
modules or other non-repairable parts. Some common examples are the
magnetron in the radar transmitter unit and the belts found in motors.

"• No preventive maintenance is carried out. The system is replaced at a
fixed age. For failures that occur in between the planned replacement
age, minimal repairs are carried out to restore the system to an
operational state. This type of maintenance is usually associated with a
system consisting of several components such that when a component
fails the system fails, and replacing the component restores the system
to operation. Minimal repairs are often carried out in the field, i.e.
onboard ships or at a forward air base.

0 The system is renewed at a fixed age either by replacement or overhaul
after which the system is "as good as new". Failures in between the
planned age replacement can be classified into type I and type II. Type
I failures are simple failures which are remedied by minimal repairs
using the support elements onboard ships, and Type II failures are major
failures which require base support facilities and are rectified by part
replacement or complete overhaul.

• Both preventive and corrective maintenance actions are employed.
Preventive maintenance is planned at some time interval to improve the

5



, Other classes of distrib:itions which exhibit wear out or wear-in such as

NBU (new bettter than used) or UBN (used bettter than new) can also be used

and are discussed in detail in Barlow and Proscham. [Ref. 2].

Most of the systems which are newly installed onboard the ships initially

have a decreasing failure rate, sometimes referred to as the infant mortality

phase or running-in period. Thea the failure rate becomeo rather constant for

some time and finally increasing, exhibiting wear out. In reliability, such

failure rate functions are said to have a "bathtub" shape. The running-in

period is usually under contractual obligation.

D. FAILURE RATE

The failure rate or hazard rate is one of the most important statistical

characteristics of any equipment/system frequently used in maintenance or

replacement studies.

The failure rate, h(t), is usually defined as the "instantaneous" conditional

probability of failure at age t, given that it has survived to age t. When F has

density f, h(t) is given by

f (t)
h(t) - (1.1)1 - 1(t)

The failure rate h(t) can also be expressed in terms of the hazard

function, H(t)

7



dH (t)h(t) = E(. (1.2)

dt

The hazard function is related to the distribution function by the

following relationship

1(t) l - log (I - F(t)) (1.3)

E. RELIABILITY

When deciding upon system maintenance policies, the frequency of

maintenance actions becomes a significant parameter. The frequency of

maintenance for a given system is highly dependent on the reliability of that

system. In general, as the reliability of a system increases, the frequency of

maintenance actions will decrease; conversely, the frequency of maintenance

actions will increase as system reliability is degraded. [Ref. 1]

The reliability function or survival function R(t) is given by

Rt(t) M I- Fxt) M f.At) dt (1.4)

R(t) is the probability that a new system will perform its mission

satisfactorily for at least a certain time t. If T is the time to failure of the

system then

R(t) = P(T > t)(15

Sometimes we are interested in the chance of survival of the system in

the future given that it has survived up till now. This is called the conditional

survival function. So if T is the time to failure of the system with the survival

8



function [1 - F(t)], then the reliability of the system, R(t;a), at some age a > 0

is given by

[1 - r (t+a) ]
R .(t; a)-(1)

[I - (a))]

F. AVAILABILITY

Availability is a measure of system readiness and it is one of the most

important measures of effectiveness usually employed in mission-oriented

situations especially in the military environment. Operational availability is

the probability that a system or equipment, when used under stated conditions

in an actual operational environment, will operate satisfactorily when called

upon [Ref 1]. System availability is influenced both by the inherent failure-

proneness of the system and by the time and resources (support elements) it

takes to restore a failed system to service. [Ref. 3]. Times to failure or 'up

times' and to restoration or 'down times' may vary considerably, and not

necessarily independen'rly, depending upon the mode of failure, the time

required to diagnose the failure, availability of special tools, test equipment,

and spare parts, and the proper dccumentation and the required personnelSi

skills. The long-run availability or steady state is expressed as follows:

(1.7)
E[u] + Z[D]

9



where

EEUI is the expected uptime of the system

E[D] is the expected downtime of the system

For a system operating at sea the availability at equation (1.6) is usually

expressed as

a.= (1.8)
KT + MDT

where

MTBM is the mean time between maintenance

MDT is the mean downtime, which includes the mean active

maintenance time (M), expected logistics delay time (LDT) and the expected

administrative delay time (ADT). The mean active maintenance time includes

the expected time for preventive and corrective maintenance.

G. MAINTENANCE TDME DISTRIBUTION

The time required to carry out simple preventive maintenance actions and

overhauls can generally be modeled as normally distributed with mean P and

standard deviation a. Most of these tasks are standard and are carried out in

accordance with the planned maintenance schedules; which stipulates the

procedures to follow, spares, material,tools and test equipment that are

required to perform the maintenance actions. [Ref 4]. The tasks usually

requires a fixed amount of time to accomplish with very little variation.
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The time required for corrective maintenance actions can be divided into

three basic categories:

• Active repair time.

, Logistics delay.

, Administrative delay.

1. Active Repair Time

Active repair time depends on the environment, state of equipment

(hot or cold), and skill level of the technician; and it can be sub-divided into the

following categories:

0 Recognition or detection ( often the time until actual occurrence of a

failure and its recognition is not known).

* Localization or diagnosis.

• Correction or repair.

# Verification or check.

2. Logistics Delay Time

Logistics delay time constitutes downtime that is expended while

waiting for the availability of a spare part, waiting for a special tool or test

equipment to perform repair, waiting for transportation, and waiting to use a

facility required for the repair.

11



3. Administrative Delay Time

Administrative delay time constitutes downtime of adminstrative

nature, such as personnel assignment priority and organizational constraint.

4. Distribution

The distributions most commonly used to describe the downtime for

corrective maintenance actions are exponential and log-normal. The

exponential distribution tends to fit the type of equipment that requires

relatively short durations of repair and usually corresponds to the replacement

of a failed unit. Occasionally, much longer times may be required for major

repair or for spares, The lognormal distribution is useful for situations where

there are few downtimes of short duration, a large number of downtimes

closely grouped about some modal value and a few downtimes of long

durations.

If X, the downtime, is a random variable having the lognormal

distribution given by the probability density ftnction

1 -e 0 tx -4 (1,9)

then the logarithm of X is Normal with mean p and variance ea. In the thesis

We shall study several maintenance policies applicable to systems onboard

ships. In Chapter II we introduce optimal maintenance for three types of

policies. These are considered in detail in Chapters III, IV and V.

12



II. OPTIMAL MAINTENANCE POLICIES AND MATHEMATICAL

MODELS

In the commercial environment determination of the optimum

maintenance policy and time is of great economic importance. However, in

many military situations, failure of a system in an operational environment is

not only going to be more costly, but dangerous and mayjeopardise the success

of a mission. If a system has an increasing failure rate, such as the failure rate

of a Weibull distribution with shape parameter > 1, it may be wise to replace

or overhaul the system before it has aged too greatly. [Ref. 5]. This is very true

for systems onboard the ships especially when they are operating many

hundreds of miles from their home base and hence the support elements are

not completely and readily available. A failure at sea may be catastrophic, in

terms of cost and operational requirements. Although we can not completely

avoid failures, however we can reduce the chance or probability of such

catastrophic failures. This can be done by studying the failure distributions

and then employing appropriate maintenance actions to maximize the various

measures of effectiveness.

The appropriate maintenance actions could be either preventive

maintenance, failure replacement, minimal repair and preventive replacement

or complete overhaul. The objective of a maintenance policy is to find a

13
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sequence of times for carr3ing out the various maintenance actions that

maximizes the appropriate measures of effectiveness over the operational and

maintenance cycle of the system.

The most commonly used maintenance policy is the policy based on age,

usually referred as the age replacement policy. Sometimes the maintenance

policy is based on the running hours of the system or equipment. If a system

consists of many identical components, then the maintenance of these

components are done in a block or group and is called the block replacement

policy, such as the replacement of the diodes in the exciter unit of an

alternator where the accessibility is poor.

A recent survey of Preventive Maintenance Models for stochastically

deteriorating single-unit system [Ref. 6] highlighted the use of some

optimization models for repair and replacement policy evaluation. Most of

these models were based on minimizing the long-run expected costs per unit

time of replacement and minimal repair as the measure of effectiveness. The

basic minimal repair model developed by Barlow and Hunter [Ref. 7] has been

generalised and modified by many authors to fit more realistic situations.

Minimal repair models generally assume the following: [Ref. 6].

* The system's failure rate function is increasing.

0 Minimal repairs do not affect the failure rate of the system.

14



* The cost of a minimal repair Cf is less than the cost of replacing the
entire system Ce.

* System failures are immediately detected.

The long-run expected cost per unit time using a replacement age t for

the basic model is given by

C Wt C/ NOt + C9  21t

where N(t) represents the expected number of failures (minimal repairs)

during the period (O,t].

Using the basic minimal repair model as developed by Barlow and Hunter

[Ref. 7], Tilquin and Cldroux [Ref. 8] investigated an optimal replacement

policy for the case where an adjustment cost CO(ik), incurred at age ik,

i n 1,2,3,.., and k > 0, is added to the basic costs C. and Cp They showed that

the long-run expected cost per unit time is given by

¢, N(O ,F, + *IMCQ)C*Q C,+C(~) (2.2)
t

where

C*o(v()) - Co(k)

and v(t) represents the number of adjustments in the period (O,t]. Tilquin and

Cldroux [Ref. 8] showed that the global minimum for equation (2.2) exists in

the interval [0,-o] when the life distribution is IFR.

15



In the thesis we will examine the various maintenance scenarios here

called the policies and then based on these we will formulate the appropriate

mathematical models using the stochastic and reliability theory. This

mathematical modelo will depend on the desired measures of effectiveness

required. From these models we can nbtain the times for carrying out the

appropriate maintenance actions. The measure of effectiveness that will be

considered are:

* Minimizing the costs.

• Maximizing availability.

* Mission reliability.

The maintenance actions will be different for various measures of

effectiveness and it is up to the Decision Maker to select which one is suitable

for his scenario.

The following maintenance policies are of interest:

* Policy I Age Replacement.

0 Policy II Minimal Repair with Age Replacement.

0 Policy III Minimal Repair, Failure Replacement /
Overhaul, Preventive Replacement /
Overhaul.

These policies are discussed in the following chapters.

16



IlL POLICY I (AGE REPLACEMENT)

The system is replaced at the time of failure or at some fixed time tp

whichever comes first. (Instead of replacement, we could also overhaul the

system,which on completion of overhaul is assumed as "good as new").

This type of scenario is usually associated with the repair by replacement

policy often adopted at sea and applies to modules and sub-assemblies of

equipment which requires support elements not available at sea, In lieu of

repairing these modules and sub-assemblies at sea, sufficient spares are

carried onboard or prepositioned at the forward operating areas so as to

accomplish the respective missions successfully. The optimal number of spare

requirements are based on the measures of effectiveness desired,

The age at which the operating system is replaced depends on the

following factors:

* Failure distribution.

6 Costs of failure and preventive replacement.

* Downtime of failure and preventive replacement.

* Measure of effectiveness:
"- Minimize costs.
"* Maximize availability.
"- Mission reliability.

17



When evaluating this policy the following assumptions are made:

@ Planned replacements are less costly than failure replacements.

* The mean downtime for a planned replacement is less than that for a
failure replacement. An unexpected failure may incur additional Logistics
Delay Time (LDT) and Administrative Delay Time (ADT), especially if the
failures occured whilst the ship is at sea.

* The system exhibits an increasing failure rate distribution i.e. h(t)
increases as t increases.

e The cost and downtime associated with simple preventive maintenance
actions and minimal repairs is negligible.

. Preventive maintenance actions and minimal repairs do not improve the
reliability of the system.

Let T be the time to failure of the system. T is a random variable with an

IFR distribution ftnction F(t). A cycle is completed everytime a replacement

is made. It can be either a failure replacement or a preventive replacement.

(The system probabilistically starts over again and each replacement

constitutes a renewal). By using the Renewal Reward Process, Ross (Ref. 9]:

Expected long run average cost, C(t.), is given by

Nxpected cost incurred during a cycleC(t,) -

uxpected length of cycle

SECC)-- (8.1)

Z[L1

18



where

C is the total maintenance cost incurred during a cycle

L is the length of a cycle

Let tp be the planned replacement age

fai1ure preventive failure
replacement replacement replacementt

4---T- i4ap 4 4, T" > -

C- M (8.2)

(CS T ,9 tP

where Cp is the cost of preventive replacement

Cf is the cost of failure replacement

Cr > Cp

I % + tp T > tPL - ( (8.8)

( Rg + T ;t

where Rp is the time of preventive replacement

R1 is the time of failure replacement

Then,

CV .. C. [ -F(t,)] + q,)J (3.4)
RP ÷t) 9 [ I-F(td] ÷JVtd f :Pttd

19



and the above equation cam be simplified to the standard form as shown in

Barlow [Ref. 7J and Jardine [Ref. 10]. See Appendix B for details.

Q9 ,I -f(t,)lf ] +CAF(,td] (3.5)

where M(t.) is the mean life during a cycle and is given by

M(s1 ) f 1'[ -,F(t)]dt (3.6)

The optimal preventive replacement age can be fond by finding the value

oft that minimizes the cost function in equation (3.4) and the optimal value

of tP is that value that satisfies the following equation [Appendix B]

h(tf P[1 -FQ•(t)-F(t, - C- h+ ,[ ,- (3.7)c-cc -c,
CrCP C~/ -p (37

The other measure of effectiveness that the Decision Maker is often

interested is the aLjilability (the probability the system is up at any time t).

Assuming that there are only two states, that is the system is either up

or down, then from the Regenerative Process Ross [Ref 9], Availability,A(t), is

the Expected amount of time the system is up during a cycle divided by the

Expected time of a cycle and is given by

Mean life during a cycleA•(t) -

Rzpected length of a cycle
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A•9) = RMO) (3.)

The optimal preventive replacement age can be found by finding the value

of to that maximizes the availability function in equation (3.8) and the optimal

value of tC. is that value that satisfies the following equation. [Appendix B]

M (91) [( I + F(tp)] t1 (3,9)

The other measure of effectiveness of interest is the mission reliability

which is defined to be the probability that the system will complete a certain

mission of duration d when it is at age t. This is given as follows

R(t + d)
R(td)

R(t)

1- r(t + d)- (8.10)
1 - r (t)

In military applications we usually like to maximize the availability of the

system subject to some budget constraint C:

max (t,)

s.t. C(tp) : C (8.11)

tp>0

Some of the continuous life distributions that are commonly used to model

the increasing failure rate of the system are:
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a. Weibull.

b. Gamma with shape parameter > 1.

c. Log-Normal (depends on parameter).

If we do not know the probability life distribution then we have to resort

to a nonparametric approach [Ref. 10].

It should be noted that if the failure rate of the system is constant i.e. it

exhibits the Exponential distribution then by virtue of its memoryless property

we do not carry out any preventive replacement no matter what because a new

system is just as bad and good as an old one.

For our case let us assume that from historical data we know that this

system has a Weibull distribution with shape parameter a and scale parameter

X. Then the probability distribution function F(t) is given by

a
NOt)=l-OW U)- 1,1:00 laO (3.12)

and the failure rate h(t) is given by

a a-1
h(t)=ax t 4>l ,X.>O ,9(O (3.13)

and the hazard function H(t) is given by

a
H(t) (1t)0 a)l, )1.0, tiO (3.14)
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It should be noted that if the shape parameter alpha a 1.0, then the

failure rate, h(t) = X,, which is a constant and this corresponds to an

Exponential distribution whose distribution function is given by

Fxt) . 1 - e -04 XOtO (3.15)

Figures 3.1 and 3.2 shows the plot of the Weibull density function and the

corresponding hazard function respectively. It can be observed that as alpha

increases the failure rate increases more rapidly.

It should be noted that for a Weibull distribution

a

has no simple elementary closed form solution, but can be expressed in terms

of the incomplete Gamma function.

A. NUMERICAL ILLUSTRATION

A case example was taken with the parameters as follow:

CP a $ 25000

Cf = $ 37500

N - 8 hours

1t = 16 hours

a W 3.0

X = 1/1390 hours

23



Cx( -10-4D

10

I p.

0 0. '1 1.5 U 2,5 a
C)( 11000D

Figure 8.1 Weibull Denuity Function f(t) for a :P 1,
and 1/lambda a 1890 hours

-1.8x / / .D

-- 24



The above example was extracted from [Ref.12]. This example was based

on the overhaul of aircraft engines. This same principle can be applied to the

overhaul of motors, compressors pumps and weapon systems onboard ships.

An IMSL subroutine DQDAG was available on the IBM3033P main frame

computer at the Naval Postgraduate School, (Ref. 13J, which could integrate

the function very accurately and expeditiously by using a globally adaptive

scheme based on Gau8a-Kronrod rules. The estimate of the absolute value of

the error using this scheme was 10.11. A brief description of this subroutine is

shown in Appendix C.

The cost function and the availability function as in equations (3.5) and

(3.8) respectively were plotted against time. Figures 3.3 and 3.4 shows these

plots respectively. It is observed that the cost is minimum at about t, 1453

hours and at a rate of about $28.95 per hour. At this critical value of t. (1453

hours) the availability is about 0.9883. It is also observed that the availability

is maximum at tP" m 1126 hours giving an availability of 0.9888 . For this

maximum value of availability we need a budget of at least $29.92 per hour.

Based on this information it is up to the Decision Maker to choose the optimal

time tp* to carry out preventive replacement or overhaul.

From the graphs in Figures 3.3 and 3.4 it is observed that the plots are

fairly flat and this gives some flexibility to the Decision Maker. The

replacement age need not occur exactly at the optimal age.
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The optimal values of t for the minimum cost and the maximum

availability as mentioned above also satifies the equations (3.7) and (8.9)

respectively. The values are 1453.45 and 1126.38 hours respectively.

The Decision Maker may also be interested in the mission reliability of

the system / equipment. The graph in Figure 3.6 shows the probability that the

system / equipment will sustain 24 hours of continuous operation successfully

when the equipment is at a certain age, say t hours. Suppose the Decision

Maker wants a reliability of not less than 0.95; then the optimum replacement

age t" is 1371 hours.

6, - ..... ............. .. ......

.~U . -. ..................... ........... ..-. .. . 66 .

* 1

0 ,54 . .. ...................................................................................

0 ,Il2 . ........... ............. ............. .... .............................. .... ... I......... ...

0. m ..... ................ . :-4 ,............ ......... .

400 N00 100 100 2100
Time Chr)

Figure 3.5 Plot of the Reliability Function, R(t).

From the plot in Figure 3.5 it is observed that the reliability decreases as

the equipment ages. This shows that even if the equipment does not fail and
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if it has to sustain an oporation for a specified duration of time, an older

equipment will be less reliable and thus may not fulfi an operational mission

successully.

Table 3.1 shows the values of the cost rate, availability and the reliability

for the replacement age around tho optimal values. It is observed that the

availability value is very close whether the replacement age is at 900 hours or

at 1600 hours. This is mainly attributable to the small values of the downtimes

for the preventive replacement, R., and failure replacement, Re

The three measures of effectiveness as discussed above are important

criteria to determine the amount of spares required to be carried onboard or

propositioned at forward operating areas. When a ship is assigned to an

operational area, say for 2 months, away from the homeport, the ship will have

to rely on the forward base for replenishment. The replenishment cycle occurs

every two or three weeks and usually takes about two days. So if the optimal

replacement age is close (not necessarily within) to these stand-off periods we

can undertake the replacement actions during these periods. It should be noted

that if we do not carry the replacement action when it is due then if we

continue to delay these actions everytime they are due, on the long run we are

going to experience high costs, poor availability and low reliability.

Since we have three measures of effectiveness and the respective optimal

replacement ages, it is up to the Decision Maker to decide which one he is

going to give top priority.
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TABLE 3.1 VALUES OF COST/HR, AVAILABILITY AND
RELIABILITY FOR VALUES OF REPLACEMENT AGE CLOSE TO

THE OPTIMUM.

Replacement Cost Availability Reliability

Age (tp') ($/hr) (A) (R)

900.0 32.78 0.9884 0.9779

950.0 31.90 0.9886 0.9755

1000.0 31.18 0.9887 0.9729

1050.0 30.59 0.9888 0.9702

1100.0 30.12 0.9888 0.9674

1150.0 29.75 0.9888 0.9644

1200.0 29.47 0.9888 0.9614

1250.0 29.26 0.9887 0.9582

1300.0 29.12 0.9886 0.9549

1350.0 29.02 0.9886 0.9515

1400.0 28.97 0.9885 0.9480

1450.0 28.95 0.9884 0.9443

1500.0 28.96 0.9883 0.9405

1550.0 28.99 0,9882 0.9367

1600.0 29.04 0.9881 0.9327
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B. SENSITIVITY ANALYSIS

Since we do not actually know the failure parameters, it is also important

to do sensitivity analysis and see how the various measures of effectiveness

vary with changes in those parameters. This will enable us to determine the

parameters that we need to estimate very accurately.

We have assumed that the failure distribution is Weibull. Therefore, the

parameters of interest are the shape parameter a and the scale parameter X.

Besides these, other parameters are the expected costs and the downtime of

preventive and failure replacement, In order to see the changes in the

measures of effectiveness we hold all the other variables constant and only

vary the parameter of interest, It would be possible to use Experimental

Design techniques such as the Factorial Designs to study the main effects on

the respective measures of effectiveness. This may help us to identify the

parameters that are more sensitive and shall be estimated accurately.

1. Alpha

Table 3.2 shows the optimal value of tP" for the minimum cost rate,

the maximum availability and the reliability of 0.95 for sustaining a mission

of duration 24 hours at age t; and the respective optimal measure of

effectiveness for various values of the shape parameter alpha. The graphical

plots are shown in Figures 3.6, 3.7 and 3.8 for the cost rate, availability and

the reliability functions respectively. It is observed that as the value of a is
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TABLE 3.2 OPTIMAL REPLACEMENT AGE FOR VARIOUS
VALUES OF ALPHA

COST AVAILABILITY RELIABILITY

ALPHA tOtp$/hr tp A tp R

2.5 1691.8 29.62 1228.2 0.9882 1547.4 0.95

2.8 1526.0 29.23 1156.6 0.9886 1424.5 0.95

3.0 1453.5 28.96 1126.4 0.9888 1371.1 0.95

3.2 1399.3 28.67 1104.9 0.9890 1331.8 0.95

3.5 1340.7 28.24 1083.4 0.9893 1289.7 0.95

increased the replacement age gets shorter in order to minimize the costs and

maximize the availability. This is also obvious from Figure 3.2 where the

hazard Increases as alpha increases and as such the failure rate also increases,

which in turns requires replacement action early so as to optimize the

respective measures of effectiveness. From Figure 3.7 it is observed that the

curves are much flatter for low values of a and for a m 3.5 the curve falls quite

rapidly on both sides of the optimal value, Figure 3.8 shows that if we want a

minimum reliability of 0.974 then the optimal replacement age is

approximately 980 hours and at this value of reliability it is insensitive to the

shape parameter alpha.
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From Table 3.2, it is observed that if the true value of the shape

parameter a was 3.2 and in the analysis we estimated it to be 3.0, then we

would have lost an availability of 0.0002 and would have incurred additional

cost of $0.28 per hour. On the other, if we have estimated it to be 3.5 then we

would have gained an availability of 0.0003 at a lower cost by $0.43 per hour.

Therefore it is much better to estimate the shape parameter higher than lower

and hence carry out the replacement or overhaul action earlier than later.

2. Lambda

Table 3.3 shows the optimal value of tp* and the respective optimal

values for the cost, availability and 0.95 reliability to sustain a mission of 24
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hours duration. The graphical plots are shown in Figures 3.9, 3.10 and 3.11 fbr

the cost rato, availability and the reliability functions respectively.

TABLE 3.3 OPTIMAL REPLACEMENT AGE FOR VARIOUS VALUES
OF LAMBDA (NOTE: MU a 1/LAMBDA)

COST AVAILABILITY RELIABILITY

MU tp $/hr tp' A t; R

1360 1422.2 29.58 1102.1 0.9885 1326.7 0.95

1380 1443.0 29.16 1118.3 0.9887 1356.3 0.95

1390 1453.5 28.95 1126.4 0.9888 1371.1 0.95

1400 1463.9 28.75 1134.5 0.9889 i386.1 0.95

1420 1484.7 28.35 1150.7 0.9890 1416.2 0.95

From the above table it is observed that the optimal replacement age

for achieving a reliability of 0.95 when subjected to a mission of duration of 24

hours increases as p increases. This is because the higher the value of p, the

reliability becomes better. Also when the value of p increases the optimal

replacement age becomes longer for both the cost rate and the availability. The

higher the value of p the failure rate for the Weibull distribution decreases and

therfore the optimal replacement age becomes longer. A small difference in the

value of p do not affect the replacement age drastically. However this is not
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true for the case of alpha. Therefore, the shape parameter a need to be

estimated more accurately than the scale parameter X.

a. Costs

The costs for the failure replacement and the preventive replacement

only affects the cost rate function. These costs estimates are quite easily

available and they are usually fairly accurate based on previous data. Since we

have not discounted costs and cash flow problems in the future it is necessary

to observe the effects of the costs on the cost rate fUnction. It is assumed that

the increase in costs are proportional such that the ratio of replacement costs,

C/Cp, is the same. It is observed that the replacement age does not vary as
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long as the ratio of the replacement costs, C/C,, remains the same. Equation

(3.7) clearly shows that if the ratio of C/C,, is the same, there is no effect on

the optimal replacement age t,*. However the cost per unit time increases

proportionally as the replacement costs increases.

4. Downtime

The availability function greatly depends on the expected downtime

of the failure replacement (1R) and preventive replacement (%i) assuming the

parameters for the Weibull distribution are estimated accurately. In our

example we have taken 1B = 16 hours and the Rp a 8 hours. Because these

figures are small compared to the optimal replacement age the availability is

very high. In reality a failure at sea may take days to repair taking all the

logistics and administrative requirements into considerations, especially when

the ship is not accompanied by any auxilliary vessel or support ship. That is

the reason all vital equipments onboard have redundancies incorporated. WVe

can carry spares onboard but may not have other support elements to rectify

the defect. Usually the downtime for a preventive replacement is constant

because it is done at the base with all the support elements and the work is

repetitive following standard procedures. Therefore, in our analysis we shall

only vary PB to see its effect on the availability. Table 3.4 shows tho values of

the availability if we carry out the preventive replacement at 1126 hours. It

is observed that the availability of the system drops as 1r increases, but is still

quite high.
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TABLE 8.4 AVAILABILiTY FOR VARIOUS VALUES OF
RV AT Tp * 1126.

Expected Downtime Availability

It, (hour.) A

24 0.985

48 0.975

72 0.965

96 0.956

C. EFFECTSI OF SIMPLE PREVENTIVE MAINENANCE

In the above policy it was assumed that simple preventive maintenance

actions did not improve the operational reliability of the system. In real life it

is evident that these preventive maintenance actions may definitely enhance

the system condition and, hence the reliability, but it will not restore the

system to the original state i.e. to be as good as new. This was also emphasised

in (Ref. 14]. However in reality there are situations for which preventive

maintenance actions can degrade the system, that is by imperfect repair. Here

we will concentrate on those actions that will improve the condition by a

certain factor. So now we shall incorporate these preventive maintenance

actions into our model. The questions to be asked is that when should we do

these type of maintenance? How do we determine the improvement factor?
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We can schedule the simple preventive maintenance actions whenever the

operational reliability hits a minimum acceptable limit lRw say 0.75 and then

as mentioned above our reliability will improve by a certain factor, thus

making the system 'younger' but not necessarily new. Or we could also carry

out a planned replacement when the operational reliability hits the Rw. value

and bring the condition of the system back to new. The appropriate

maintenance action to be taken at these critical times depends on the measure

of effectiveness required.

[Ref. 15] solved this problem by minimizing the expected cost rate as the

measure of effectiveness. The number of simple preventive maintenance

actions before a planned replacement action which gives a minimum cost rate

is then obtained by evaluating the cost rate whenever the system reaches lRw.

Here we shall carry out the appropriate maintenance actions so as to maximize

the availability of the system.

Notation is as follows:

IP simple preventive maintenance

2P planned preventive replacement

20 failure replacement

T time to failure

RI(td) probability of no failure during (tl,t 1)

F1(t1) probability of a failure during (t.,tt)

F(t) probability distribution fUnction of the time to failure
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f(t) probability density function of the time to failure

h(t) failure rate function of the time to failure

RU time required for each maintenance action i=1,2 j=P,C

Cu cost of each maintenance action i=1,2 ijP,C

R minimum acceptable operational reliability limit

i, time the system reaches 1.•

Let I be the improvement factor, then if maintenance type IP is carried

out at time tj then the system age is reduced from t1, to ( t1.I ) and therefore

ta- Mt + tI (I - Z)

and ts a ts + (t tO) (1 . Z)

in general t. - ta., + (1 - t(8.18)

As I -1 1, the effect on the system approaches "bad as old" and

As I -. 0, the effect approaches "good as new" [Ref. 15].

The value of tý can be computed as follows:

t, - ,,, (3.19)

and from equation (3.19) we can compute tý for i w 2,3,...,n.

The value of I can be estimated from past records from the data collected

on similar equipment where performance measurements are taken before and

after the simple preventive maintenance actions. In some cases performance

measurement techniques such as condition monitoring by vibration analysis

are employed. This is largely used in rotating machinery. As mentioned earlier,
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simple preventive maintenance actions constitutes cleaning, adjustments,

replacing worn out parts, tuning and minor calibration. All these actions

normally improve the reliability which is a function of the failure rate. So

these actions may prolong the life of the system, and enable the system to be

'younger's From experience, it is found that as the system becomes older these

simple preventive maintenance actions ber.3mes ineffective and as such the

system may require a complete overhaul which on completion is as good as

new. For our case here we shall consider that on completion of each simple

preventive maintenance action, the system age is reduced from tý to t i - (t - )

(1 - I) where tý is the time of the simple preventive maintenance action.

A cycle is completed each time a replacement takes place which could be

either due to a failure replacement or a planned replacement. On completion

of the replacement action the cycle probabilistically starts all over.

1. Case 1

T > t. (Failure occurs after the type 2P maintenance)

1P 1P 2PI I I I
0 ta ... t

The costs associated are:

a) Expected costs of type IP maintenance.

If planned replacement takes place at t., then there will be (n - 1)

maint),nanco actions of type iP and each costs C1p.
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Thou total cost = (n - 1) CIp

But this event will occur if there are no failures in the first (n-i)

intervals. The Probability of this event is = RI(tl)Rg(t2)...R.(t4). It is assumed

that the failures are statistically independent. The failure in each interval is

independent from the failure in next interval.

Therefore expected costs of type 1P maintenance.

(n - 1). Ci,. I' Rk(t1) (3.20)
Jul

where R 1(t•) -1. Probability of a failure in the (n-1) intervals and is given by

Rj(t) 1 - [F(t1) - (t, - (t, - t))] (3.21)

b) Expected costs of type 2P maintenance.

Since there will be only one rype 2P maintenance in an interval, the

expected costs of type 2P maintenance

c,. ]' w(t (3•.2)
4-1

The eApected downtime can be obtained by substituting the cost by

downtime in equations (3.19) and (3.20).

The downtime associated are:

a) Expected downtime of type 1P maintenance .

(A - 1). R,. IfIR(t) (323)

b) Expected downtime of type 2P maintenance =
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R

Sit" 'I t) (3.24)

2. Came 2

t.- 1 < T < tn

11 11 11 2C

0 t t, ... t, tn

The costs associated are:

a. Expected cost of type 1P maintenance

If the failure occurs between ta.. and t%, then there will be (n-1)

preventive maintenance actions and the Probability of this event is

Probability of no failures in the first (n-i) intervals multiplied by the

Probability of a failure between tu.. and t.. Again we assume that failures are

independent. Then the expected cost of type 1P maintenance

N' I-IE (o - 1) - C1 , fl R/t,) F43~) (3.25)

b. Expected costs of type 2C maintenance =

[C " R•f l t,) . F5 t)] (3.26)
jul jul

The downtime associated are:

a. Expected downtime of type 1P maintenance
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Ei-1) *R2 A flp R~t) *F~(t~) (3.27)
jul jul

b. Expected downtime of type 2C maintenance=

[, 1 R;I 9 t F•1t] (3.28)
Jul

The expected operation time until t. is the sum of the average

operation time until t%.1 and the average operation time during (t,.1,t,).

The expected downtime is the sum of all the downtimes in equations

(3.23), (3.24), (3.27) and (3.28).

From our earlier discussion we know that the mean life of the

system, assuming only 1 interval, is given by

M(t) " [I - F(t)] d (329)

and the above equation can also be written as

M(tl) f 't At) * R(t,)t1  (3.30)

and for n intervals the equation can be written as

• { .Rt [ , ,) , t At) , + + R,(,)(,, - ,,.l)] (3.31)
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Total Operation Time
Now AvailabLity M -

Total Operation Time + Total Downtime

It will be shown later that if the expected downtime for a type 1P

maintenance (simple preventive maintenance) is small then the availability

function given by the above equation is a pod approximation.

The expected costs is the sum of all the costs in equations (3.20),

(3.22), (3.25) and (3.26). Then the cost rate function, C(t.), is given by

Total Zxpeoted CostsC (t rp) "a...
Total Operation Time + Total Downtime

8. Numerical mustration

Now let us take a case example with the following data:

Let the time to failure, T, follow a Weibull distribution with shape

parameter a and scale parameter X.

Let

a a 3.0

X 1/1390

R1p w 1 hour

Rem. 8 hours

Pw = 48 hours

Using the above data and equations, a Fortran program was written

[Annex A] to determine the optimum times to carry out simple preventive

maintenance actions and complete overhauls or preventive replacement so as
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to maximize the availability. The results are tabulated in Tables 3.5, 3.6, and

3.7 for values of I = 0.1, 0.5 and 0.9 respectively.

When I 0.1, carry out simple preventive maintenance actions at

times:

* 917.6 hours

9 1743.4 hours

9 2486.7 hours

and preventive replacement or complete overhaul at time 3155.6 hours to

achieve a maximum availability of 0.9836.

When I a 0.5, carry out simple preventive maintenance action at time

917.6 hours and a preventive replacement at time 1376.4 hours to achieve a

maximum availability of 0.9802,

When I = 0.9. do not carry out any simple preventive maintenance

action and at time 917.6 hours replace or carry a complete overhaul of the

system so as to achieve a maximum availability of 0.9794.

It is observed that as the improvement factor, I -+ 0, the system

becomes "good as new" after each simple preventive maintenance action and

as the improvement factor,I -+ 1, the system becomes "bad as old" after each

preventive maintenance action.
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TABLE 8.5 REPLACEMENT TIMES FOR IMPROVEMENT FACTOR,
I 0 0.1 AND Rw m 8 HOURS, L, w 48 HOURS, %1 p = 1 HOUR, 3 = 8.0,

p = 1890 HOURS.

N TIME (HOURS) AVAILABILITY

1 917.6 0.979421

2 1743.4 0.982197

8 2486.7 0.983305

4 3155.6 0.988591

5 3757.7 0.983585

6 4299.5 0.983480

7 4787.1 0.983344

8 8226.0 0.983206

9 5621.0 0.983075

10 5976.5 0.982955

11 6296.5 0.982848

12 6584.4 0.982751

13 6843.6 0.982664

14 7076.8 0.982587

15 7286.7 0.982518
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TABLE 3.6 REPLACEME NT TIMES FOR IMPROVEMENT FACTOR,
I u 0.5 AND R" m 8 HOURS, RH m 48 HOURS, Hll = 1 HOUR, a * 3.0,

- 1390 HOURS.

N TIME (HOURS) AVAILABILITY

1 917.6 0.979421

2 1376.4 0.980155

3 1605.8 0.980074

4 1720.5 0.979848

5 1777.8 0.979644

6 1806.5 0.979483

7 1820.9 0.979358

"8 1828.0 0.979261

9 1831.6 0.979184

10 1833.4 0.979122

11 1834.3 0.979071

12 1834.7 0.979029

13 1835.0 0.978994

14 1835.1 0.978964

15 1835.1 0.978938
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TABLE 3.7 REPLACEMENT TIMES FOR IMPROVEMENT FACTOR,
I. 0.' AND IL p 8 HOURS, JL a 48 HOURS, R•p 1 HOUR, a 3.0,

p 1390 HOURS.

N TIME (HOURS) AVAILABILITY

1 917.6 0.979421

2 1009.4 0.979042

3 1018.5 0.978456

4 1019.5 0.977955

5 1019.5 0.977540

6 1019.6 0.977193

7 1019.6 0.976899

8 1019.6 0.976646

9 1019.6 0.976426

10 1019.6 0.976123
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MV. POLICY II (MINIMAL REPAR WITH AGE REPLACEMENT)

As an alternative assume that the system consists of several components

and the system fails when one of the components fail, that is components are

connected in series. We shall assume the components have indepondent IFR

distribution. Then the system lifetime is also IF3. (The IFR property is

maintained under the formation of the series system). Preventive replacement

is carried out when the system reaches the age t,. Between the preventive

maintenance, failures are repaired as quickly as possible (minimal repairs)

either by replacing the failed component with a new one or repairing the failed

part. We also assume that the system failure rate is not disturbed on

completion of the minimal repair i.e. the failure rate is the same as before

failure. Yf the failure occurs at time t < tp the falure rate of the system just

after the minimal repair is h(t). Failurea are detected immediately.

This idea of minimal repair was first introduced by Barlow aad it is

described in (Ref. 7]. After that, many authors ,expanded on these ideas and

formulated various models asoociated with minimal repairs; they used the

expected cost rate as the measure of effectiveness. In this policy we will

emphasize the availability of the system as our measure of effectiveness.

However we will also formulate the expwcted cost rate models.
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Let 0 : t be the system operating time since last replacement. Then the

probability of a failure occurring in [t,t+dt] is h(t)dt where h(t) is the failure

rate of the system.

Let N(td) w number of failures occuring in time (O,t,)

When repairs are minimal, ( N(tp), tv : 0 ) is a Nonhomogeneous Poisson

Process with intensity function h(tp).

The probability that the system will experience n failures in the interval

(O,tp) is given by

P( N( [1 (4.1)

where

m(t,) - E[ N(t,)- 0 h(t)dt (4.2)

m(tp) is called the mean value function.

A. COST MODEL

The age t1 " at which the operating system is replaced depends on the

following factors:

"* Failuxe distribution (IFR).

"* Costs of minimal repair and preventive replacement.

"* Downtime of minimal repair and preventive replacement.
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* Measure of effectiveness:
- Minimize costs.
- Maximize availability.

We have assumed that there are no simple preventive maintenance

actions.

S- 2 -R- "--lp
tip

x ---- faLlure

Let Cr be the mean cost of each minimal repair.

CP be the mean cost of preventive replacement.

RP be the mean time of preventive replacement.

1R be the mean time of a minimal repair.

and t1 be the planned replacement age.

Cf>C, and R1ýR>

Then, assuming that the cost of downtime is negligible, the total coat is

given by

C E CA +C, (4.3)
jul

where Cj is the cost of the i-th minimal repair and the length of the cycle is

given by

L a tr + V 5 (4.4)
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By using equation (3.1) and assuming that the time for a minimal repair

is very small compared to that of the length of a cycle, the expecteO cost rate

function is given by

C(,) f h(t) (45)

and we wish to minimize the cost per unit time, so we set the derivative of

equation (4.5) to 0 and we obtain

-+) C

Then the value of tP* that satisfies the above equation is the optimal

replacement age,

For a time to failure, T, following a Weibull distribution with shape

parameter az and scale parameter X. the expected cost rate function is given as

below

t, + ¢• (4.7)

For given values of Cf , Cp , RP, Rr and the parameters a and X we can

find the optimal values of t,* that minimize the expected cost rate.

Now let us take a case example with the data as follows, but first without

preventive maintenance action:

Cp $ 25000
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Cf=$ 1000

Rp 8 hours

Rf1 1 hour

a m=3.0

X V1390 hours

Figure 4.1 is a plot of the cost rate function as in equation (4.7) and the

optimal value of t1 ' that minimizes the cost rate function is 3222 hours at a

cost of $11.60/hour.

1,4 , .... .....a.. ............ . .. °. ........ ......

11 ....... *-1--...-.,*-4-7-77-.-1...-...-...7-7...

2000 8500 saga 3500 4000
"Ti'em CW)

Figure 4.1 Plot of the Cost Rate Function.

Table 4.1 shows the values of the cost rate for the replacement age to

close to the optimal value. From Figure 4.1 it is observed that the curve is

fairly flat near the optimal value thus giving some flexibility to the decision

maker.
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TABLE 4.1 VALUES OF COST/HOUR FOR VARIOUS
REPLACEMENT AGE.

Replacement Age Cost

(hours) ($/hour)

3000.0 11.65

3050.0 11.63

3100.0 11.61
I I

3150.0 11.60

3200.0 11.60

3250.0 11.60

0300.0 11.60

8850.0 11.61

3400.0 11.63

3450.0 11.65

3500.0 11.68

Now suppose there are s identical components which operate and fail

independently and have the same failure distributions with the same

parameters. All of these components are replaced at time tp at a cost of CP

When each of the component fails it is replaced individually or undergoes
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minimal repair without affecting the system failure rate as a whole. Then the

expected cost rate function becomes

CQ,0t+ (4.8)

Now let us imagine that we carry out a simple preventive maintenance

action at some time t. and after N of these preventive maintenance actions are

carried out we either replace the system or carry out a complete overhaul

which on completion is like new. Any failures between the preventive

replacement are treated as minimal failures and are repaired quickly in

negligible downtime at a cost of Cp The cost of each simple preventive

maintenance action is C,,. It is assumed that after each simple preventive

maintenance action the system improves by a certain factor, so for simplicity

we say that the system becomes 'younger'. Nakagawa [Ref. 16]. This means

that if t is the time of a preventive maintenance action the failure rate on

completion is h(t-x) where x is the amount of time by which the system has

become 'younger'. However the failure rate after a minimal repair stays the

same. The value of x can perhaps be determined from past historical records

using performance measurements techniques such as condition monitoring by

vibration analysis or some output parameter. However a methodology for

characterizing the effective age reduction, x, remains to be developed.

According to the above assumption the replacement age is Nt,, and

there are N-i simple preventive maintenance actions.
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A cycle is completed at (Nt. + 14) said the process probal-ilisticaliy

starts all over.

H-f-- r fi0It ta t5 - N

f .... minimal failure

S.... expected time of preventive replacement

ti, i * 1,2,...,N.1 .... simple preventive maintenance

Ntý .... preventive replacement

(Note: At tt the age of the system is (t, - x))

The total expected costs, E[CJ, incurred in a cycle is given by

S[c] - c, f0>hQA + C,. C, f,""h(t)d + C, + .. + C, (4.9)

for 0 : x stp

and this equation can be simplified to

N-1i p(
-rC, - '' h(t) d + (N-l)C, + C, (4.10)

for OS xstp

and then the expected cost rate function, C(tp), is given by

c (t1 ) = 2 CC)

where E[L] = Nt, + RP.
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For a time to failure, T, following a Weibull distribution with shape

parameter a and scale parameter X ie expected cost rate function is given as

follows

N-1

C/ e I (N-l)C, + C,

When C., , 0 and x - 0, that is there is no preventive maintenance

action, then the above equation is the same as equation (4.7).

Now we shall plan to carry out a preventive maintenance at some

time t• at a cost of C,, $ 500.00. On completion of this simple preventive

maintenance action, the age of the system becomes younger by some value x.

When x a 0, it is observed that there is no improvement to the optimal planned

replacement age but we have incurred an additional cost at $11.75/hour

instead of the original cost at $11.60/hour. As x increases from 0, the optimal

planned replacement age increases and also the cost rate reducos. This is for

the case of carrying out only one preventive maintenance in between the

planned replacement or overhaul age. We could carry on the same analysis

incorporating more preventive maintenance actions and the results will give

more improvement. However this greatly depends on the parameters such as

the value of x and the cost of preventive maintenance assuming the other

parameters remain fixed.
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In the real scenario as the system gets older there is more

deterioration and on completion of each preventive maintenance action the

value of x probably reduces over time; that is; it is some function of t, and

there comes a stage at which preventive maintenance action will not improve

the system any longer. For simplicity, however we assume that x is constant.

It should be noted that there will be values of age for which (age - x) < 0 , we

therefore take the maximum (0, (age - x)) as the age of the system on

completion of a simple preventive maintenance action.

The Figure 4.2 and Table 4.2 illustrate that simple preventive

maintenance actions increases the optimal replacement age.

Table 4.2 shows the time tbr a preventive replacement (TPR) and the

time for a simple preventive maintenance (TPM) for various values of x.

B. AVAILABILITY MODEL

Now let us take the availability as our measure of effectiveness. From

earlier discussion Availability is given by

Mean Life During A Cycle
ATotal length of cycle

A( " ,,(4,12)

and we wish to maximize the availability function, so we set the derivative of

equation (4.12) to 0 and we obtain
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Figure 4.2 Plot of the Cost Function with Preventive Replacement
for Various Values of z. C., a $500.00.

TABLE 4.2 OPTIMAL PREVENTIVE REPLACEMENT AGE WITII
PREVENTIVE MAINVMANCE FOR VARIOUS VALUES OF X.

cop $ 500.00.

zTPR 1PM Cost
(hours) (hour. * 1) (hour. a 0.5) (S$hOur)

0 3244 1622 11.75

100 3281 1641 11.48

200 3320 1660 11.22

500 3443 1722 10.49

800 3573 1787 9.83

1000 3667 1834 9.43
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h(te) [t, + 1, - f (:Odt = ( )

Then the value of tp* that satisfies the above equation is the optimal

replacement age.

For a time to failure, T, following a Weibull distribution with shape

parameter ot and scale parameter X. the availability function is given as follows

S tu - R/Xta 
(4.14)

The availability function in equation (4.12) is an approximation because

we do not take into account of the downtime during a minimal repair, which

in reality is not entirely valid. In the equation we assume that the system can

still fail when the system is down (we are integrating over (0,t) and some of

that is downtime). However, this approximation is quite accurate if the

downtimes are small, as is likely to be true in practice.

We can find an exact solution to equation (4.12) as follows:

Let

A(t) - Probability the system is available at time t (age t)

following the last replacement.

h(t) - failure rate at time t.
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t = rapair 'ate at time t. For our case thi3 is assumed to be

constant and denoted by p. Then p = B;.1

(It should be noted that it may take longer to repair an older system)

Then,

A(t+ft) = Ait)(1 - h(t)dt) + (I - A(t))I±(t)dt + o(dt) (4.15)

where o(dt) represents higher order terms which are = 0

From equation (4.15), arranging the terms we get

A(t+dt) A (t)
-- h(t) A(t) + 9(t) (I - AWt)) (4.16)

dt

dIL(t)-- =-h (t) A (t) -j(t) A (t) + g (t) (4.17)
dt

dt

dtd -A()f +J'0'at,) dhfo i•t1 l) + 00(1)) *1 (4.19)

A(t)e -() A(0) fl, d (4.20)
:,*1 -- tue&IPI)

A(t)" A(O)e'fA' ••* + fo~~rP""-•A, •>a dt2 (4.21)

For a time to failure, T, following a Weibull Distribution with shape parameter

a and scale parameter X, the failure rate h(t) is given by

h(t) - axlA."•OtI0 (4.22)

then subtituting A(0) = 1 and, ji(t) = (RP)f' ; A(t) can be simplified as follows:
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AQt)u Jt 10J ý* (4.23)

"fl(1' "t A. - A]

But the integral 0 has no closed form

solution. Therefore we have to evaluate it numerically.

Using the same principle as that in [Ref. 17] the avermge availability over

a cycle of length tP + N• and hence in the long run is given by

A(9 f A¢) a (4.24)

By taking the derivative of equation (4.19), we obtain

( A (4.25)
d-, (t, + V 2

Setting
- 0 , for t* > 0 then tp' is a candidate for

d (tp) a time between the end of one preventive
replacement and the beginning of the next

and tp" is the value that satisfies the following equation

A(t,) - 1 A(t (4.26)

To solve equation (4.24) the IMSL subroutine DQDAG was used to

compute the integral in equation (4.23) for various valucs of t. So we obtained

A(t) for various values of t and the graph of this function is shown in Figure
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4.3. Then we used the IMSL subroutine DCSINT [Ref. 13] to compute the cubic

spline interpolant to the set of data points obtained earlier (values of t and the

corresponding values of A(t) ). Finally we used the IMSL subroutine DCSITG

[Ref. 13. to evaluate the integral of the cubic spline for various values of tý. A

brief description of the IMSL subroutines DCSINT and DCSITG are in

Appendix D and E respectively. The values obtained by using this 'exact'

method wao compared with those values obtained using the approximation as

in equation (4.12), These values are tabulated below. It is observed that the

Cx a. 01)

" ................................... ...

94 1. .................

920 ............ . .............

I..-.--.-------- . ..................
r ...... ..... :-

0 1000 2000 3000 4000

Tin* Chr)

Figure 4.3 Plot of the Availability Function for Values of am 3.0,
p. 1890, R1 m 8 hours, I% m 8 hour•.
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both the approximate and exact solutions are the same to four decimal places

and the approximation gives an accurate solution. This is true for small values

of Rf and as Rr is increased from 1.0 hour to 8 hours, both the approximation

and the exact solutions are the same to two decimal places, as shown in Table

4.4. However the optimal replacement age are the same for both the cases. As

Rr increases the accuracy of the approximation diminishes.

Table 4.3 shows the values of availability for et w 3.0, p = 1390, I• a 17

hours, Rb =8 houra. The optimal replacement age for the two methods and the

maximum availability are:

* approximate solution 2203 hours 0.994581

0 exact solution 2208 hours 0.994589

It is observed that, the approximation gives very accurate results.

Table 4.4 shows the values of availability for o: = 3.0, p a 1390, Rý U 8

hours, R. = 8 hours. The optimal replacement age fbr the two methods and the

maximum availability are:

0 approximate solution 1099 hours 0.989201

• exact solution 1108 hours 0.989301

It is again observed that the approximation gives very accurate results.
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Table 4.5 shows the values of availability for a f 2.5, p = 1390, Rr f 1

hour, Rp -8 hours. The optimal replacement age for the two methods and the

maximum availability are:

- approximate solution 2711 hours 0.995104

* exact solution 2717 hours 0.995112

Once again it is observed that the approximation gives very accurate

results. If the actual shape parameter was 2.5 and if we have estimated it to

be 3.0, then we would have lost an availability of 0.000523 which can be

considered negligible.

Table 4.6 shows the values of availability for a = 3.5, p = 1390, RI w 1

hour, RP = 8 hours. The optimal replacement age for the two methods and the

maximum avail ability are:

• approximate solution 1935 hours 0.994243

• exact solution 1940 hours 0.994253

Once again it is observed that the approximation gives very accurate

results. If the actual shape parameter was 2.5 and if we have estimated it to

be 3.5, then we would have lost an availability of 0.000859 which again can be

considered negligible. This shows that the shape parameter does not effect the

availability drastically and a close estimate is sufficient.
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Table 4.7 shows the values of availability for a = 3.0, p = 1350, Rr = 1

hour, R, a 8 hours. The optimal replacement age for the two methods and the

maximum availability are:

* approximate solution 2140 hours 0.994421

* exact solution 2145 hours 0.994430

It is observed that the approximation gives very accurate results. If the

actual scale parameter was 1390 and if we have estimated it to be 1350, then

we would have lost an availability of 0.000159 which again can be considered

negligible.

Table 4.8 shows the values of availability for a a 3.0, p a 1450, I: a 1

hour, R. = 8 hours. The optimal replacement age for the two methods and the

maximum availability are:

• approximate solution 2298 hours 0.994805

* exact solution 2302 hours 0.994812

It is observed that the approximation gives very accurate results. If the

actual scale parameter was 1450 and if we have estimated it to be 1350, then

we would have lost an availability of 0.000382 which again can be considered

negligible. This shows that the scale parameter does not effect the availability

drastically and a close estimate is sufficient.
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TABLE 4.3 COMPARISON OF AVAILABILITY FOR VALUES OF
3" 8.0, p . 1890, RV 1 HOUR, Rp a 8 HOURS.

Replacement Approximate Exact

Age (hours) Availability Availability

1200.0 0.992845 0.992847

1300.0 0.993258 0.993261

1400.0 0.993593 0.993595

1500.0 0.993862 0.993865

1600.0 0.994076 0.994080

1700.0 0.994245 0.994249

1800.0 0.994374 0.994379

1900.0 0.994469 0.994474

2000.0 0.994532 0.994539

2100.0 0.994569 0.994576

2200.0 0.994581 0.994589

2300.0 0.994571 0.994580

2400.0 0.994540 0.994551

2500.0 0.994490 0.994503

2600.0 0.994423 0.994437
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TABLE 4.4 COMPARISON OF AVAILABILITY FOR VALUES OF
.a 8,0, 9 u 1390, RH m 8 HOURS, H, * 8 HOURS.

Replacement Approximate Exact

Age (hours) Availability Availability

800.0 0.988211 0,988273

900.0 0.988798 0.988870

1000.0 0.989108 0.989193

1100.0 0.989201 0.989300

1200.0 0.989116 0.989232

1300.0 0.988880 0.989014

1400.0 0.988513 0.988669

1500.0 0.988028 0.988210

1600.0 0.987437 0.987648

1700.0 0.986748 0.986993

1800.0 0.985967 0.986252

2000.0 0.984148 0.984530

2200.0 0.982012 0.982519

2400.0 0.979577 0.980244

2600.0 0.976857 0.977724
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TABLE 4.5 COMPARISON OF AVAILABILITY FOR VALUES OF
x=2.5,0 1890, Ry I HOUR, R • 8 HOURS.

Replacement Approximate Exact

Age (hours) Availability Availability

2000.0 0.994779 0.994788

2100.0 0.994874 0.994878

2200.0 0.994949 0.994954

2300.0 0.995008 0.995013

2400.0 0.995051 0.995057

2500.0 0.995080 0.995087

2600.0 0,995098 0.995105

2700.0 0.995104 0.995112

2800.0 0.995100 0.995108

2900.0 0.995087 0.995096

3000.0 0.995065 0.995075

3100.0 0.995036 0.995047

3200.0 0.995000 0.99501).

3300.0 0.994956 0.994969

3400.0 0.994907 0.994921
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TABLE 4.6 COMPARISON OF AVAILABILITY FOR VALUES OF
Sa 3.5, p a 13 90, 1v ..a1 H O U R ,R a 8 H O UR S .

Replacement Approximate Exact

Age (hours) Availability Availability

1200.0 0.992883 0.992885

1300.0 0.993279 0.993281

1400.0 0.993590 0.993593

1500.0 0.993829 0.993833

1600.0 0.994007 0.994012

1700.0 0.994132 0.994137

1800.0 0.994208 0.994215

1900.0 0.994242 0.994250

2000.0 0.994236 0.994246

2100.0 0.994194 0.994206

2200.0 0.994118 0.994132

2300.0 0.994009 0.994026

2400.0 0.993869 0.993889

2500.0 0.993699 0.993723

2600.0 0.993501 0.993529
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TABLE 4.7 COM[PARISON OF AVAILABILITY FOR VALUES OF
8 3.0, m 1350, B m 1 HOUR, R w 8 HOURS.

Replacement Approximate Exact

Age (hours) Availability Availability

1300.0 0.993201 0.993204

1400.0 0.993526 0.993529

1500.0 0.993785 0.993789
a-

1600.0 0.993990 0.993993

1700.0 0.994147 0.994152

1800.0 0.994264 0.994269

1900.0 0.994346 0.994352

2000.0 0.994397 0.994404

2100.0 0.994419 0.994428

2200.0 0.994417 0.994426

2300.0 0.994391 0.994402

2400.0 0.994344 0.994357

2500.0 0.994278 0.994293

2600.0 0.994193 0.994210

2700.0 0.994092 0.994110
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TABLE 4.8 COMPARISON OF AVAILABILITY FOR VALUES OF
o m 3.0, p n 1450, BF w 1 HOUR, Ip = 8 HOURS.

Replacement Approximate Exact

Age (hours) Availability Availability

1500.0 0.993961 0.993963

1600.0 0.994189 0.994192

1700,0 0.994373 0.994376

1800.0 0.994517 0.994521

1900.0 0.994628 0.994632

2000.0 0.994709 0.994714

2100.0 0.994764 0.994770

2200.0 0.994795 0.994802

2300.0 0.994805 0.994812

2400.0 0.994795 0.994803

2500.0 0.994767 0.994777

2600.0 0.994722 0.994733

2700 0 0.994662 0.994674

2800.0 0.994687 0.994601

2900.0 0.994498 0.994514
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V. POLICY III (MINIMAL, REPAIR / FAILURE REPLACEMENT /

PREVENTIVE REPLACEMENT)

POLICY II assumes that each time a failure occurs it can be repaired and

the system is restored to an operational state without changing the failure rate

of the system as a whole. Now we shall be more realistic and consider the

possibility of a major failure before the planned age replacement time t,*, and

that failure is rectified by a replacement. (Here again a replacement may be

an overhaul which is assumed to return the system to a state as good as new).

So when the system is running, two types of failures are possible:

0 Type I failure, denoted by 1C. This failure is corrected by minimal repair;
if the Type I failure occurs at age t, the failure rate just after correction
is h(t). This type of failure is usually repaired at sea by the ship's staff
using the support elements onboard.

9 Type II failure denoted by 2C. This failure is remedied by effective system
replarcement; the Type II failure is followed by overhaul, after which the
failure rate is h(O). This type of failure is beyond the ship's staff
capability either due to lack of expertise or unavailability of the required
support elements, and the ship has to return to base to effect repair
either by major overhaul or replacement.

The failures are detected immediately.

It is assumed that the costs and downtime for simple preventive

maintenance actions are negligible.
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First let us assume the time to some type of failure, T, has an IFR

distribution F(t) with a failure rate denoted by h(t); 0 < t is the system

operating time since last overhaul. Let Y be the time of a type 2C failure

having the distribution function G(t).

Let P, be the probability of Type 1C failure

and p, be the probability of Type 2C failure

(P, and p2 could dependent on time) ; p, + p2 = 1.0

Now let N(t) denote the number of Type 1C failures that occurs in time

t, where ; is measured from a moment of replacement or overhaul. By the

assumption, the expected ntunber of Type 1C failures in time t, m(t) a E[N(t)],

satisfies a simple differential equation obtained as follows:

m(t+dt) m e(t) (1 - p~h(t)dt) + (m(t)+I)plh(t)dt + o(dt.) (5.1)

where o(dt) represents higher order terms which are * 0

rearranging the terms we get

dm (t)
Spjh (t)

dt (5.2)

and therefore

m(t) p fp t h(t) d, (53)
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provided minimal repair correction times are assumed to be negligible enough

so that the expected downtime from that source is close to Rlc.m(t), where R1c

is the mean time of a minimal repair.

Let T be the time to a failure (either Type 1C or 2C) with the failure rate

h(t)

Then the failure rate of Type I failure - p1h(t) at age t

and the failure rate of Type II failure p~h(t) at age t.

Since

[1 - FNt)] - (5.4)

and

(1 -Go) ] e

I.fee

.- [I - Q) ]-[1 At) ? (5.5)

From equation (5.5), it can be seen that if p2  1, then the distribution of

any type of failure is the same as the distribution of a Type 2C failure and this

implies that each failure is a major failure and it requires a replacement /

overhaul action and this is the case as in Policy I (Age Replacement) as

mentioned in Chapter III.

For p * 0, this implit-" j that the probability of a major failure, i.e Type 2C

is 0 and each failure is a minimal failure and the fai'ure is removed by

76



minimal repair and this is the case as in Policy Il (Minimal Repair and

Preventive Replacement) as mentioned in Chapter IV.

For the case when 0 < P2 < 1, then a failure could be either

9 Type 1C

a Type 2C

This is Policy III, which is the general case and will be discussed in this

chapter.

This idea of two types of failure has been studied by Beichelt and Fisher

[Ref. 18). They derived the Reliability functions for calculating the expected

long run cost rate for a generalised age-replacement policy. They assumed that

maintenance actions take only negligible times which in reality is not true,

especially when a major failure occurs at sea. Besides that, in the military

environment we are often interested in the availability of the system as our

measure of effectiveness so in this policy we will expand the cost rate model,

but also, and more importantly, formulate a model to maximize the availability

of the system subjected to two types of failures.

A. COST MODEL

The age tp' at which the operating system is replaced or overhauled

depends on the following factors:
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"* Failure distribution (IFR).

"* Costs of minimal repair, preventive replacement and failure replacement.

"• Downtime of preventve replacement and failure replacement.

"* Measure of effectiveness:
- Minimize costs.
- Maximize availability.

It is assumed that the downtime of a minimal repair is negligible.

Let Cjc be the cost of a minimal repair.

Cac be the cost of a failure replacement.

Cap be the cost of a preventive replacement.

R1o be the mean time of a minimal repair (Type 1C failure).

1.c be the mean time of a failure replacement (Type 2C failure).

LR be the mean time of a preventive replacement. t,. be the planned

replacement age.

N(tP) be the number of minimal repairs in interval (O,t,).

y be the observed time from system replacement, until the next

Type 2C failure.

N(y) be the number of minimal repairs in the period (O,y), where y is

the time until Type 2C failure.

R20 > N2 > •€ and Ca= > C,, > Cl 0

A replacement takes place either at time t. or when there is a Type 2C

failure.
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1. Case I

x---- MnLMa3 repaiz'

2. Cae 2

0 y

X-----•ainmaL3 .ep&.e.

A cycle is completed each time a replacement taken place and the

costs C incurred in a cycle is given by the total costs of minimal repairs and

the cost of either a preventive replacement or a failure replacement, This is

given by the following:

( Ci I N(tM) Y Y > t. ] + Cc w.p. 1 - 0(y)

( Cie [ N(y) I Y ! tP, I + C,, w.P. 0(y) (5.6)

In order to find the total costs of minimal repairs, we ought to know

the expected number of minimal repairs and this is given below for both the

two cases;
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For case 1, Y > tP

E[Nct I Y, Y> . f , p, h(td ( .7)

For case 2, Y :5 tp

Let N(Y) = n, then

E tN(y) I Y, tP n P[N(y)-n I Y•t,,,.o (5.8)
j n P[NO')"n t

ago PYt, ]

thus
-0- 0 p h(s) dr I #€O dt(se

E[ N(y) I Ytp -tf E[fo]P(

Then

BIC) [(Cz c W eN(t,) I Y > ,I) + Cap MI1 -(t,)] +
[(Cic E(N(y) I Y £ t,)) + c ][G(t,)] (.10)

The length of the cycle, L, depends on the time of a Type 2C failure

and is given by:

Then the expected length of the cycle, EEL], is

E[L] - R.,[ -G(t,)] + P4G(td)] + M(t,) (5.12)

where M(t.) is the mean age of the system at replacement / overhaul and is

given by
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M(t,) .f�t e(t) dt + tp[I1 - O(t,)] (5.13)

which can be simplified to

M(t=fQ [1 - G(t)]dt (5.14)

From equation (3.1),

3 cc]
C (t,) Z L

Then the optimal value oftp* is the value that minimizes the cost rate

function C(tp) and this can be found by graphical or numerical analysis. [Refa

16] highlights that an finite optimal interval t,* exists if h(t) is monotone

increasing function and C > 0 where C is given by

CIO
C-

(CS0 - Cap - CO)

3. Welbull Example

For a time to failure, T, following a Weibull distribution with shape

parameter a and scale parameter X the expected total cost in a cycle, E[C], is

given as follows:
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BIC] P I P I aC1 .p (tp)a + - C ) + (5.15)

The integral .4 I has no closed form

solution and the IMSL subroutine DQDAG was used to solve it numerically.

The length of the cycle is given by

EEL] - - R.c{1 . ,." p (5.16)

4. Numerical mustration

Now let us consider an example with these data: assuming that the

downtime for a minimal repair is negligible:

C~p w $ 25,000

Csc m $ 37,500

CIO • $ 1,000

RP a 8 hours

1•c = 16 hours

RIO w 1 hour

a=.0

X 1/1390 hours

P =.0.6

p2 •0.4
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Figure 5.1 shows the plot of the expected cost rate function. It is

observed that the curve is fairly flat near the optimal point thus giving

flexibility to the decision maker. The optima! replacement age is ti = 1888.64

hours at a cost of $22.03 per hour.

In a real situation p2 is a function of age and it usually increases

with age i.e. as the system ages the probability of a major failure approaches

1.0. For our case we have taken the probability to be constant and this again

is to simplify our computation.

232 .....:...................-..............I................

22.0 . ... ................ ....... ... ...... .............................

2. f. . . ..... -. .

'1400 011100 2200 2600 30

Time C•I')

Figure 6.1 Plot of the Cost Rate Function.
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TABLE 5.1 VALUES OF COST/HOUR FOR VARIOUS
REPLACEMENT AGE.

Replacement age Cost

t,' (hours) ($ hour)

1000.0 27.67

1100.0 26.01

1200.0 24.76

1300.0 23.83

1400.0 23.15

1500.0 22.67

1600.0 22.35

1700.0 22.15

1800.0 22.06

1900.0 22.03

2000.0 22.06

2100.0 22.13

2200.0 22.22

2300.0 22.32

2400.0 22.42

2500.0 22.52
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B. AVAILABILITY MODEL

Now let us take the (Point) Availability as our measure of effectiveness.

When the ship is at sea there are usually two types of failures; failures which

can be rectified onboard, each of which individually does not effect the

availability of the system drastically, and other failures which are not

repairable onboard so the ship has to return to port to effect repairs; this

causes the availability to be more severely degraded. First we shall assume

that the downtime for a minimal repair is negligible. Then using the equation

(3.8), the availability function is given by

M(t, (5.17)
A Jt: r (I,[ - oqtp] + itx [Gotp] + mqtp

where M(tý) is the mean operational time in a cycle and it is given by

M~t'
MV 3f P [I1- GQ]Idt (.6

and this is similar to the availability function in Policy I in Chapter III.

Again the availmbility function in equation (5.17) is an approximation

because we do not take into account the downtime during a minimal repair,

which in reality is not faithful to reality, but should be reasonably accurate.

If we do take the downtime of the minimal repair into account we can

obtain an exact solution as follows:
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Using the same principle as in equation (4.15),

Let

Y a Time of a Major Failure

( 1 if the system is up at time t
X(t) W

{0 if the system is down at time t

z P{Failure is Type 10)

a,(t) w P{Y > t, X(t) w 1)

aO(t) a P(Y > t, X(t) = 0)

al(t) + ao(t) a P(Y > tQ a 1 - G(t)

{X(t) ifY>tz(t) a
(0 ifY.It

h(t) w the failure rate of Type 10 failure, which is p1h(t)

p(t) = the repair rate of Type 1C failure, and for the Exponential

distribution, p(t) a R1071

Now,

a,(t+dt) a a,(t)(I - h(t)dt) + a 0 (t)IL(t)dt + o(dt) (5.19)

ao(t+dt) = ao(t)((I - p (t)dt) + a&(t)h(t)dt + o(dt) (5.20)

Initial conditions: a, (0) w 1 ; ac (0) = 0

Equation (5,19) becomes

d (aI)
- h(t)a&(t) + a.(t)IL(t) (5.21)

dt
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d - - ýLt(t)at) + a&(t)h(t)2 (5.22)

dt

Since ao(t) ( (I - G(t)) - al(t), Equation (5.21) becomes

d (a,)
- - M(t)a,(t) + A(t)[(1 - Q(t)] - a,(t)} (5.23)

dt

which can be simplified to

d(a&)
- - (h(t) + g (t)aCt) aM+ g(t)(I - G(t)) (5.24)

dt

The equation,

d(a&)
+ (h(t) + g (t)) a1 (t) - 0 ; with a*(0) 1 1

dt

has the solution

a,(t) M ZXP{- M(t))

where

E(t) f* + g() I d,

Therefore the equation (5.24) has the solution

d ~t) - [1 e f 'I (s) (1 - q(s)} I-) d] (5.25)

and equation (5.25) can now be written as
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p1(t) -f ** +f I(t) -(t 2)e +f (5.26)

and for the Weibull distribution with shape parameter ac and scale parameter

4, and substituting the values for h(t) and p(t) in equation (5.26), the

probability that the system is up at time t is given by

-Ip
1
(ibi -- teat IV+LPI(t) - e J1C RIC/ ,0 •c Aedt2 (5.27)

-101049 -Jp (Xr" 2 j%(hY. # J]

But the integral 0 A A 2 has no closed-form

expression in terms of elementary tabulated functions. Therefore we have to

evaluate it numerically.

Since the length of the cycle, L is

Pa + tp Y > tp
L w

( Rge+ Y :5t

then using the same principle as that used in [Ref. 16] the average availability

over a cycle of length L and hence in the long run is given by

fotý al~t) dt (5.28)

Ep.cted IVnth of a CycLe

But the Expected length of a cycle is given by equation (5.12). Therefore

the Availability, A(t.), is given by
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A~t) - f-'° a,(,) dt (5.29)

To study the above expression the IMSL subroutine DQDAG was used to

compute the Availability function al(t) for various values of t. Then we used

the IMSL subroutine DCSINT [Ref. 13] to compute cubic spline interpolant to

the set of data points obtained earlier (values oft and the corresponding values

of a,(t) ). Finally we used the IMSL subroutine DCSITG [Ref. 13] to evaluate

the integral of the cubic spline for various values of the replacement age t,.

From this we can compute the optimal replacement age t* and the maximum

availability. The values obtained by using this 'exact' solution was compared

with the approximation as in equation (5.17). These values are tabulated

below. It is observed that both the approximate and exact solutions are the

same to three decimal places, and the approximation gives an accurate

solution. However this is true for small values of RIO and %2c. As the values of

RIO and Rac are increased the accuracy of the present approximation method

degrades.

Table 5.2 shows the values of availability for ot z 3.0, p = 1390, RIO w 1

hr, R20 = 16 hrs, RP m8 hrs. The optimal replacement age for the two methods

and the maximum availability are:
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• approximate solution 1528 hours 0.991715

* exact solution 1496 hours 0.991567

If we use the approximate solution as our reference for the replacement action,

the exact availability is 0.991565, which is extremely close to the exact

solution, and much more easily obtained.

Table 5.3 shows the values of availability for a = 3.0, p a 139P•, RIB = 8

hr, Rw = 24 hrs, Rp a 8 hrs. The optimal replacement age for the two methods

and the nazimum availability are:

* approximate solution 1201 hours 0.989796

0 exact solution 1113 hours 0.989070

If we use the approximate solution as our reference for the replacement action,

the exact availability is 0.989015 which is extremely close to the exact solution.

Table 5.4 shows the values of availability for a = 3.0, p = 1390, RIC = 8

hr, R2c = 72 hrs, RI = 8 hrs. The optimal replacement age for the two methods

and the maximum availability are:

"* approximate solution 752 hours 0.984143

"* exact solution 736 hours 0.983835

If we use the approximate solution as our reference for the replacement action,

the exact availability is 0.983827 which is very close to the exact solution.
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Table 5.5 shows the values of availability for a = 3.5, p = 1390, R1c = 8

hr, R2c = 24 hra, R2, = 8 hrs. The optimal replacement age for the two methods

and the maximum availability are:

* approximate solution 1147 hours 0.990119

* exact solution 1076 hours 0.989519

If we use the approximate solution as our reference for the replacement action,

the exact availability is 0.989471 which is again very close to the exact

solution.

Table 5.6 shows the values of availability for a = 2.5, p a 1390, R1C = 8

hr, R20 = 24 hbr, R&. a 8 h.re. The optimal replacement age for the two methods

and the maximum availability are:

0 approximate solution 1317 hours 0.989493

9 exact solution 1200 hours 0.988594

If we use the approximate solution as our reference for the replacement action,

the exact availability is 0.988535 which is once again very close to the exact

solution.

From the above results we can conclude that the approximate solution is

a good approximation for planning the replacement or overhaul actions of a

system in order to maximize the availability of the system. From our earlier
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discussion we found that the availability is sensitive to the shape parameter

ca; Figure 5.2 shows the availability (exact solution) for various values of alpha.

If the shape parameter a was in fact 3.5 and in our estimation we used

a a 2.5, then we would have lost an availability of 0.000626, which is

extremely small. This shows that the parameters need not be estimated very

accurately to achieve good results.

Figure 5.2 shows that for low values of alpha such as 2.5, the availability

function is rather flat and there is more flexibility in determining the

replacement age that is, the replacement interval at 1200 hours or 1500 hours

gives about the same availability on the long run. However this is not true for

higher values of alpha such as 8.5 where the availability function falls quite

rapidly on both sides of the optimal replacement age t,*. At the availability of

about 0.9883, the replacement age is 1475 hours and it is insensitive to the

value of alpha

Now we shall also look at the effects of the scale parameter X on the

availability. Table 5.7 shows the values of availability for a = 3.0, p - 1350, R1c

S8 hr, 11 - 24 hrs, Re 3 8 hrs. The optimal replacement age for the two

methods and the maximum availability are:

* approximate solution 1167 hours 0.989496

* exact solution 1081 hours 0.988750

92



cx o0a.)

. -lp - -.

a ' , , w 3.2
U.,. /'i -" ",1 I,

so's al , -, .......-.

S0o @o0 1000 '1200 '1400 1500
7IRs CI~Ori)

Figure 5.2 The Plot of Ezact' Availability for Various Values of the
Shape Parameter Alpha.

If we use the approximate solution as our reference for the replacement

action, the exact availability is 0.988693 which is very close to the exact

solution.

Now if the actual scale parameter was 1390 hours and it was estimated

to be 1350 hours, then we would have lost an availability of 0.00032 which can

be considered very small.

Table 5.8 shows the values of availability for a = 3.0, p = 1450, R1C = 8

hr, R2c = 24 hrs, Rp = 8 hrs. The optimal replacement age for the two methods

and the maximum availability are:
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TABLE 5.2 COMPARISON OF AVAABILITY FOR VALUES OF
a a 3.0, p = 1390, Rm, w 1 HR, B, = 16 BMS, Rw a 8 HIS

Replacement Approximate Exact

Age (hours) Availability Availability

1320.0 0.991592 0.991474

1344.0 0.991621 0.991499

1368.0 0.991646 0.991520

1392.0 0.991666 0.991537

1416.0 0.991683 0.991549

1440.0 0.991695 0.991559

1464.0 0.991705 0.991564

1488.0 0.991711 0,991567

1512.0 0.991715 0.991566

1536.0 0.991715 0.991563

1560.0 0.991713 0.991557

1584.0 0.991709 0.991549

1608.0 0.991702 0.991538

1632.0 0.991693 0.991525

1656.0 0.991682 0.991511
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TABLE 5.3 COMPARISON OF AVAILABILITY FOR VALUES OF
. 3.0, p - 1390, R11 , w8 HIS, w a 24 EMS, Rw, a 8 HES

Replacement Approximate Exact

Age (hours) Availability Availability

1018.0 0.989570 0.988997

1042.0 0.989629 0.989030

1066.0 0.989678 0.989053

1090.0 0.989718 0.989066

1114.0 0.989749 0.989070

1138.0 0.989772 0.989065

1162.0 0.989787 0.989052

1186.0 0.989794 0.989032

1210.0 0.989795 0.989004

1234.0 0.989789 0.988970

1258.0 0.989778 0.988929

1282.0 0.989760 0.988882

1306.0 0.989737 0.988830

1330.0 0.989709 0.988773

1354.0 0.989677 0.988710
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TABLE 5.4 COMPARISON OF AVAILABILITY FOR VALUES OF
a a 3.0, p w 1390, RC w 8 EHRS, R.C a 72 HRS, Rsi u 8 HRS

Replacement Approximate Exact

Age (hours) Availability Availability

520.0 0.982290 0.982140

544.0 0.982706 0.982542

568.0 0.983057 0.982877

592.0 0.983349 0.983154

616.0 0.983588 0.983376

640.0 0.983779 0.983550

664.0 0.983926 0.983680

688.0 0.984033 0.983768

712.0 0.984102 0.983819

736.0 0.984138 0.983835

760.0 0.984141 0.983818

784.0 0.984115 0.983772

808.0 0.984061 0.983697

832.0 0.983981 0.983596

856.0 0.983877 0.983470

96



TABLE 5.5 COMPARISON OF AVAILABILITY FOR VALUES OF
a 8.5, P = 1890, RJ = 8 HTSq, 1w * 24 HRTS, Rt m 8 HtS

Replacement Approximate Exact

Age (hours) Availability Availability

944ý0 0.989738 0.989330

968.0 0.989828 0.989394

992.0 0.989905 0.989445

1016.0 0.989969 0.989482

1040.0 0.990021 0.989506

1064.0 0.990061 0.989517

1088.0 0.990091 0.989517

1112.0 0.990110 0.989506

1136.0 0.990119 0.989484

1160.0 0.990119 0.989452

1184.0 0.990110 0.989411

1208.0 0.990092 0.989361

1232.0 0.990067 0.989302

1256.0 0.990034 0.989235

1280.0 0.989994 0.989160

97



TABLE 5.6 COMPARTSON OF AVAILABILITY FOR VALUES OF
o-2.5, p a 1390, R1C = 8 ERS, Rw 324 EMS, R2p = 8 EMS

Replacement Approximate Exact

Age (hours) Availability Availability

1120.0 0.989330 0.988561

1144.0 0.989370 0.988579

1168.0 0.989404 0.988589

1192.0 0.989431 0.988594

1216.0 0.989454 0.988593

1240.0 0.989471 0.988587

1264.0 0.989482 0.988576

1288.0 0.989490 0.988560

1312.0 0.989493 0.988540

1336.0 0.989492 0.988515

1360.0 0.989487 0.988487

1384.0 0.989478 0.988456

1408.0 0.989466 0.988421

1432.0 0.989451 0.988383

1456.0 0.989433 0.988342
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TABLE 5.7 COMPARISON OF AVAILABILITY FOR VALUES OF
w = 8.0, pm 1350, R•c , S PS, ,M 0 - 24 HRS, RPp . 8 HMS

Replacement Approximate Exact

Age (hours) Availability Availability

948.0 0.989132 0.988588

972.0 0.989214 0.988643

996.0 0.989284 0.988687

1020.0 0.989343 0.988718

1044.0 0.989392 0.988738

1068.0 0.989430 0.98S748

1092.0 0.989459 0.988749

1116.0 0.989480 0.988740

1140.0 0.989492 0.988722

1164.0 0.989496 0.988697

1188.0 0.989494 0.988664

1212.0 0.989484 0.988623

1236.0 0.989468 0.988577

1260.0 0.989446 0.988523

1284.0 0.989418 0.988464
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TABLE 5.8 COMPARISON OF AVAILABILITY FOR VALUES OF
S3.0, p - 1450, RI a 8 EMS, Rt .24 HIRS, R w.8 ERS.

Replacement Approximate Exact

Age (hours) Availability Availability

1000.0 0.989812 0.989322

1024.0 0.989892 0.989379

1048.0 0.989961 0.989425

1072.0 0.990021 0.989461

1096.0 0.990072 0.989488

1120.0 0.990114 0.989506

1144.0 0.990148 0.989515

1168.0 0.990175 0.989516

1192.0 0.990194 0.989511

1216.0 0.990207 0.989497

1240.0 0.990213 0.989478

1264.0 0.990213 0.989452

1288.0 0.990208 0.989420

1312.0 0.990197 0.989382

1336.0 0.990181 0.989340
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"* approximate solution 1253 hours 0.990214

"* exact solution 1161 hours 0.989516

If we use the approximate solution as our reference for the replacement

action, the exact availability is 0.989464 which is again very close to the exact

solution.

Now if the actual scale parameter was 1450 hours and it was estimated

to be 1350 hours, then we would have lost an availability of 0.000446 which

once again can be considered very small. This shows that the scale parameter

does not effect the availability drastically and a close estimate is sufficient.

C. MAXJMIZE AVAILABILITY SUBJECT TO BUDGET CONSTRAINT

The availability and cost are very important measures of effectiveness.

•We would like to have as many resources as possible to maximize the

availability of a system, however in reality we are often limited by budget

constraints. So we would like to achieve cost effectiveness, that is we would

like to

maximize Effectiveness Level

subject to Budget :9 B

The effectiveness level which is commonly used is the availability. So in

our case we would like to

Maximize A(tM )

Subject to C(tý) < B.
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We have solved this problem graphically. Figure 5.3 shows the plots of the

availability and the cost rate functions as formulated in Section B. It is

observed that the availability is maximum at 0.991567 at an optimal

replacement interval t, of 1496 hours while the cost is minimum at

$22.03/hour at an optimal replacement interval tp" of 1889 hours.

Now if we have a budget of not exceeding $22.25/hour, then the maximum

availability that can be obtained is C 9915 with an optimal replacement

interval t,* of 1650 hours.
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Figure 5.3 Plot Showing the Availability and the Cost Rate
Function.

The other measure of effectiveness that is also used is the mission

reliability and this again will give another optimal replacement age, so now we
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have a multiple independent conflicting criterion and it is up to the Decision

Maker to decide which of the measure of effectiveness is vital and fits the

scenario very well.
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VL CONCLUSION AND RECOMMENDATIONS

The fighting effectiveness and operational readiness of a ship depends

largely on the operational availability of her equipment and systems. If we are

not constrained by the budget then we can expend the resources necessary to

achieve the desired availability, such as incorporating more redundancies or

carrying out "premature" replacements and overhauls. However in reality this

is not the case, and we are always limited by the available budget, and we

would like to maximize system availability subject to budget constraints.

At sea, equipment and systems are exposed to various environment and

unfavourable conditions. As such, they are subject to stochastic failure and

deterioration. However, with timely maintenance actions as discussed in the

various policies in the thesis, we can minimize catastrophic and unexpected

failures, enabling us to achieve the desired measures of effectiveness.

Therefore, based on the optimal maintenance policies, we can carry out

replacement actions or complete overhaul of the equipments and systems at

the base during the stand-off periods so that when the ship is at sea we can

minimize loss of availability due to failures and maximize our successes in the

operational missions.

Based on the policies, we can also carry adequate spares. This is

particularly important for long missions or when the need to be propositioned

104



in forward operating areas. On the other hand, although we can carry spares

onboard, sometimes other support elements are not available to rectify the

defects.

In our analysis, we have assumed that we know the failure distribution.

For our case we concentrated on the Weibull distribution. The two important

parameters which are usually estimated are the shape parameter, alpha, and

the scale parameter, lambda. From the analysis it is observed that these

parameters need not be estimated very accurately. A slight variation in the

values of the parameters do not affect the long run availability and cost rate

functions drastically. Of the two, the shape parameter needs to be estimated

more accurately.

In the formulation of the availability functions, we simplified the

computation by assuming the downtime for a minimal repair to be negligible.

When compared with the exact solution, taking into account the downtime for

a minimal repair, the results obtained by the approximation method gave

extremely accurate results. Many of the functions and integrals that were

formulated did not have closed form expressions in terms of elementary

tabulated functions. However IMSL subroutines were available in the Math

library at the main frame at the Naval Postgraduate School and these

subroutines expeditiously computed the integrals very accurately.

The expected downtimes, as taken in our analysis, are practical figures

assuming all the support elements are readily avalilable when required. That
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is the reason for the high values of the availability. In reality we often have to

wait for spare parts and support elements, which sometimes have long lead

times.

In the thesis we also studied the effects of simple preventive maintenance

actions on the measures of effectiveness. It is observed that simple preventive

maintenance actions do not restore the system to a condition "as good as new"

but the maintenance actions can enhance or improve the reliability of the

system by a certain factor which decreases as the system ages. However, a

methodology for chacterizing the effective age reduction remains to be

developed. In our analysis we have assumed that the system improves by a

certain factor on completion of each preventive maintenance action.

Most planned maintenanco systems usually adopt maintenance efforts

based on calendar time (weeks, months) or running hours of systems or

equipment, but from the analysis it is observed that for systems that have a

"wear-out" life distribution we shall have to successively resort to decreasing

maintenance intervals if we are going to maintain the systems above some

minimum reliability level.

This subject can be expanded further by future research. The following

areas are recommended:

Carry out similar analysis, especially for the availability function for the
three policies when the underlying life distribution F comes from a family
of Gamma Distribution.
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"* Incorporate imperfect repair into the model.

"* A methodology for chacterizing the improvement of the reliability of the
system on completion of preventive maintenance needs to be investigated.

"* A system may consists of various sub-systems. The maintenance actions
for the sub-systems has to be coordinated so that instead of just taking
into account the availability of the sub-systems individually, the whole
system has to be considered bearing in mind of some dependence on the
supporting elements associated with the sub-systems.
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APPENDIX A. COMPUTER PROGRAM AND oU1TPUT

PROGRAM PM

C THIS PROGRAM IS FORMULATED TO COMPUTE THE AVAILABILITY,
C RELIABILITY AND COST FUNCTIONS FOR VARIOUS POLICIES OF
C INTEREST. THE PROGRAM DETERMINES THE OPTIMAL REPLACEMENT
C OR OVERHAUL INTERVALS FOR THE SYSTEM. THE OPTIMAL
C REPLACEMENT INTERVAL DEPENDS ON THE MEASURES OF
C EFFECTIVENESS DESIRED AND THE RELEVANT TYPE OF POLICY
C APPLICABLE TO THE SYSTEM UNDER STUDY. THE PROGRAM
C UTILIZES THE IMSL SUBROUTINES FROM THE MATH LIBRARY
C AVAILABLE AT THE MAIN FRAME AT THE NAVAL POST GRADUATE
C SCHOOL. IT IS ASSUMED THAT THE TIME TO FAILURE FOLLOWS
C THE WEIBULL DISTRIBUTION WITH SHAPE PARAMETER ALPHA AND
C SCALE PARAMETER LAMBDA.

C .-----------------------------.----------. .-----.--.------.-.---- - ------- - - -- ---- -- -

C PARAMETER STATEMENT

INTEGER NDATANTINT

PARAMETER (NDATA - 81, NTINT - 20)

C ................................................... .....---------------------------
C VARIABLES DECLARATION

REAL*8 A, B, F, RESULT, ERRABS, ERRREL, ERREST, ALPHA,
& LAMBDA, MU, C2C, CIC, C2P, R2P, R2C, RIP, RIC,
& Al, AA, XDATA(NDATA), YDATA(NDATA),
& BREAK(NDATA), CSCOEF(4INDATA), AVAIL, AVAIL1,
& P1, P2, SOL!N, SF, CDF, LENGTH, G, H, ANSWER,
& DCSITG, COST, COSMIN, ANS, D, REL, E, EE, FP,
& TD2P, TDT1, TDT2, SUMDIP, SUMD2C, STIME, TL,
& CDFTL, T(NTINT), REL, R, TDT, UPTIME, TD1P,
& SUM, SUM1, X, XX, LL, UL, STEP

INTEGER IRULE,POL,P,SPMREQNN

C VARIABLES DEFINITION
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C A .............. LOWER LIMIT OF INTEGRATION USED IN
C ARGUMENT OF THE IMSL SUBROUTINE DQDAG AND
C IMSL FUNCTION DCSITG
C B .............. UPPER LIMIT OF INTEGRATION USED IN
C ARGUMENT OF THE IMSL SUBROUTINE DQDAG AND
C IMSL FUNCTION DCSITG
C EEE,F,FF,G,H..FUNCTIONS TO BE INTEGRATED
C RESULT ......... ESTIMATE OF THE INTEGRAL FROM A TO B OF
C THE FUNCTIONS E,EE,FFF
C ERRABS ......... ABSOLUTE ACCURACY DESIRED AS THE INPUT
C ARGUMENT OF THE IMSL SUBROUTINES DQDAG
C ERRREL ......... RELATIVE ACCURACY DESIRED AS THE INPUT
C ARGUMENT OF THE IMSL SUBROUTINES DQDAG
C IRULE .......... CHOICE OF QUADRATURE RULE (SEE APPENDIX
c 2)
C ALPHA .......... SHAPE PARAMETER OF WEIBULL DISTRIBUTION
C LAMBDA ......... SCALE PARAMETER OF WEIBULL DISTRIBUTION
C MU ............. RECIPROCAL OF LAMBDA
C C2C ............ EXPECTED COST OF A FAILURE REPLACEMENT
C C1C ............ EXPECTED COST OF A MINIMAL REPAIR
C C2P ............ EXPECTED COST OF A PREVENTIVE REPLACEMENT
C R2C ............ EXPECTED DOWNTIME OF A FAILURE
C REPLACEMENT
C RiC ............ EXPECTED DOWNTIME OF A MINIMAL REPAIR
C R2P ............ EXPECTED DOWNTIME OF A PREVENTIVE
C REPLACEMENT
C Al ............. COMPUTE EXPONENTIAL EXPRESSION (POLICY
C II)
C AA ......... AVAILABILITY AT TIME T (POLICY II)
C NDATA ........ NUMBER OF DATA POINTS FOR COMPUTING CUBIC
C SPLINE INTERPOLANT. INPUT ARGUMENT FOR
C IMSL SUBROUTINE DCSINT
C XDATA( )...... ARRAY OF LENGTH NDATA CONTAINING THE DATA
C POINTS ABSCISSAS. INPUT ARGUMENT FOR IMSL
C SUBROUTINE DCSINT
C YDATA( )...... ARRAY OF LENGTH NDATA CONTAINING THE DATA
C POINTS ORDINATES. INPUT ARGUMENT FOR IMSL
C SUBROUTINE DCSINT
C BREAK( )...... ARRAY OF LENGTH NDATA CONTAINING THE
C BREAKPOINTS FOR THE PIECEWISE CUBIC
C REPRESENTATION. OUTPUT ARGUMENT OF THE
C IMSL SUBROUTINE DCSINT
C CSCOEF ......... MATRIX OF SIZE 4 BY NDATA CONTAINING THE
C LOCAL COEFFICIENTS OF THE CUBIC PIECES.
C OUTPUT ARGUMENT OF THE IMSL SUBROUTINE
C DCSINT
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C AVAIL .......... APPROXIMATE AVAILABILITY
C ANSWER ......... EXACT AVAILABILITY
C P1 ............. PROBABILITY OF TYPE I (MINIMAL) FAILURE
C P2 ........... PROBABILITY OF TYPE II (MAJOR) FAILURE
C SF ............. SURVIVAL FUNCTION
C CDF ............ DISTRIBUTION FUNCTION
C LENGTH ......... LENGTH OF A CYCLE
C COST, COSMIN...COST RATE FUNCTION
C D .............. MISSION DURATION
C REL ............ RELIABILITY
C TD2P,TDT2 ...... TOTAL DOWNTIME OF PREVENTIVE REPLACEMENT
C TD1P,TDT1 ...... TOTAL DOWNTIME OF PREVENTIVE MAINTENANCE
C SUMD1P ........ TOTAL DOWNTIME WHEN TIME OF FAILURE IS
C AFTER PREVENTIVE REPLACEMENT
C SUMD2C ........ TOTAL DOWNTIME WHEN TIME OF FAILURE IS
C BEFORE PREVENTIVE REPLACEMENT
C STIME ......... TOTAL DOWNTIME IN A CYCLE
C UPTIME ........ TOTAL UPTIME IN A CYCLE
C LL ............ LOWER LIMIT OF REPLACEMENT INTERVAL
C UL ............ UPPER LIMIT OF REPLACEMENT INTERVAL
C STEP ........... STEP SIZE OR INCREMENT
C POL.........POLICY YO BE EVALUATED
C SPMREQ ......... SIMPLE PREVENTIVE MAINTENANCE REQUIREMENT

Ceeeeeeeeeeeeee eeeee......•.. .w.
C EXTERNAL SUBROUTINES AND FUNCTIONS

EXTERNAL E,EE,F,FF,GHDQDAG,DCSINT,DCSITG

C ...............................
C COMMON BLOCKS

COMMON /FT/ R1C,B
COMMON /GT/ P2
COMMON IT/ PI
COMMON /HT/LAMBDAALPHA

C....................------------------------ --- ----- -------- -------------•----•---------m-----------•---- --
C INITIALIZATION

A = 0.ODO
ERRABS = 0.ODO
ERRREL - 0.00001DO
[RULE .2
PREL a 1.ODO
SUMDIP - O.ODO
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SUMD2C = 0.ODO
STIME = 0.ODO
SUM - 0.ODO

C Prompt the user for the pclicy to be evaluated

C POLICY I ....... AGE REPLACEMENT
C POLICY II ..... AGE REPLACEMENT WITH MINIMAL REPAIR
C POLICY III ..... AGE REPLACEMENT WITH TWO TYPES OF
C FAILURES. MTPE I MINIMAL FAILURE, TYPE
C II MAJOR FAILURE

PRINT*,IENTER THE NUMBER OF THE POLICY TO BE EVALUATED'
READ*,POL
PRINT*,'OLICY * ',POL
GOTO (100,200,300),POL

100 CONTINUE

PRINT*,'DO YOU WANT TO INCLUDE SIMPLE PREVENTIVE
& MAINTENANCE.ENTER 1 FOR NO AND 2 FOR YES'
READ*,SPMREQ
GOTO (125,150),SPMREQ

C POLICY I (AGE REPLACEMENT-NO SIMPLE PREVENTIVE
C MAINTENANCE)

125 CONTINUE
PRINT*,IENTER THE ESTIMATED VALUES FOR THE SHAPE

& PARAMETER ALPHA AND THE SCALE PARAMETER MU'
READ*ALPHA,MU
PRINT*,'ALPHA =',ALPHA,'MU = ',MU

PRINT*,'ENTER ESTIMATED VALUES FOR THE EXPECTED COST OF
& PREVENTIVE REPLACEMENT FOLLOWED BY THE EXPECTED

& COST OF FAILURE REPLACEMENT'
READ*,C2P,C2C
PRINT*,'EXPECTED COST OF A PREVENTIVE REPLACEMENT =
& ',C2P
& ,'EXPECTED COST OF A FAILURE REPLACEMENT *

& ',C2C

PRINT*,'ENTER VALUES FOR THE EXPECTED DOWNTIME OF
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& PREVENTIVE REPLACEMENT FOLLOWED BY EXPECTED
& DOWNTIME OF A FAILURE REPLACEMENT'
READ*,R2P,R2C
PRINT*,'EXPECTED DOWNTIME OF A PREVENTIVE REPLACEMENT-
& p'R2P
& ETXPECTED DOWNTIME OF A FAILURE REPLACEMENT
& ImRC

PRINT*,'ENTER THE VALUE OF MISSION DURATION TIME IN
& HOURS&
READ*,D
PRINT"',' MISSION DURATION TIME iD, 'HOURS'

PRINT*,'ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE'0
READ"',LL,UL,STEP
PRINT"','LOWER LIMIT m ',LL,'UPPER LIMIT - ',UL,'STEP -

& %,STEP

WRITE(30,101)ALHA,MU,C2P,C2C,R2P,R2C,D
101 FORMAT( 15X,`POLICY',3X,'I',3X,'(AGE REPLACEMENT)'

& ,/,15Xo30('-)),//
& 10X,'ALPHA a 7,3.1,17X, 'MU a ',Fs.1/,f
& 1OX,'C2P w $',7.1,12X, 'C2C n $',F7.1),
& 1OXR2P a 0,F4.1,1 HOURS',11X,'R2C - 4.o
& HOURS
& '.,1OX,`MISSION DURATION a W,4.1,' HOURS'1//
& 5X,'REPLACEbMEN,5X,'COST RATE',5X,'AVAlLABILITY',5X,
& 'MISSION RELIABILITY',4
& 5X,'AGE (HOURS)',5X,'($/OUR)',10X.,(A)', 17X,'(R)',/
& 5X1(-) X,8('-'), MIX-1(') 5X.,19('-'))

LAMBDA wn l.ODO/MU
DO 111 I LL,UL,STEP

BmDBLE(I)
CALL DQDAG (E,A,B,ERRAES,ERREEL,IRULE,RESULT,ERREST)
SF=EXP(-((LAMBDA"'B)"'"ALPHA))
CDF.1.OD"-F
COST.((C2P"'5Fk+C2C"CDF)W((R2P"'SF)+(R2C"'CDF)+RESUL'r)
AVAILmRESULT/((R2P"'SF)+(R2C"'CDF)+iRESULT)
REL.p DEKP(-((LAbMDA*(B+D))""'ALPHA))/

& DEXP(-((LAMB3DA"'B)"'ALPHA))

WRITE(30,102)B,COST,AVAIL,REL
102 FORMATZ5XF7. 1,9X,,F8.3,8XP8.6,12XF8.6)
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11 CONTINUE

GOTO 99

C POLICY I (AGE REPLACEMENT - WITH SIMPLE PREVENTIVE
C MAINTIENANCE)

150 CONTINUE

PRINT*,TENTER THE ESTIMATED VALUES FOR THE SHAPE
& PARAMETER ALPHA AND THE SCALE PARAMETER MU'
READ*ALPHA,MU
PRINT*,'ALPHA "',ALPHA,'MU - ',MU

PRINT*,'ENTER VALUES FOR THE EXPECTED DOWNTIME OF
& PREVENTIVE REPLACEMENIM FOLLOWED BY EXPECTED
& DOWNTIME OF A FAILURE REPLACEMENT'
READ*,R2P,R2C
PRINT*,'XPECTED DOWNTIME OF A PREVENTIVE REPLACEMENT.

& I'MR
& `EXPECTED DOWNTIME OF A FAILURE REPLACEMENT -
& ',R2C

PRINT*,`ENTER THE EXPECTED DOWNTIME FOR SIMPLE
& PREVENTIVE MAINTENANCE AND THE IMPROVEMENT
& FACTOR ON COMPLETION OF THE MAINTENANCE'
READ*,RIP,R
PRINT*,'THE DOWNTIME FOR SIMPLE PREVENTIVE MAINTENANCE

& m ',RIP
& ,'THE IMPROVEMENT FACTOR =,R

PRINT*,'ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE'
READ*,LL,UL,STEP
PRINT*,'LOWER LIMIT - ',LL,'UPPER LIMIT - ',UL,'STEP -
& ',STEP

WRITE(30,103)ALPHA,MU,R2P,R2C,RIP,R
108 FORMAT(5X,POLICY',2X,r,2X,'(AGE REPLACEMENT WITH

& SIMPLE',IX, 'PREVENTIVE MAINTENANCE)',/,8X,
& 63 (A),//,
& 10X,'ALPHA = ',F3.,17X,'MU w ',F6.1),
& 1OX'R2P = ',F4.1,' HOURS',IIX,'R2C a ',F4.1,'
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& HOURS',,/,1OX,'R1P = ',F4.1,' HOLTR,12X,'R
& ',F4.l//,
& 5X,'NO. OF INTERVAL',5X,'REPLACEMENT AGE (HOURS)',5X,
& 'AVAILABiLITY',,5x,i5('-'),5x,28( .-'),5X,12('-')

LAMBDA - 1.ODO/MU
T(1) - (1.ODO/LAMBDA)*((NLOG(0.75D0)))**

& (1.ODO/ALPHA))
CDF - 1.ODO - EXP(-((LAMBDA*T(l))**ALPHA))
SFP 1.ODO.CDP
B mTM1

DO 10 1 a 1,NTINT
IF (I .GT. 1) THEN

END IF
10 CONTINUE

DO 20 N a LL,UL,STEP
IF (N.EQ. 1) THEN

TDT m (R2P*SP)+(R2C*CDF)
A m OODO
CALL DQDAG(FFAB,ERIRABS,ERRREL,IRULE,RESULT,

& ERREST)
UPTIME -(ALPHA*(LAMB3DA**ALPHA)*RESULT)+(SFhIT(1))

ELSE
DO 30J. 1,N

IF (J .EQ. 1) THEN
TL * 0.0DO

ELSE
TL = lUT(1U(()-(-1))

END IF
CDFTL a 1-EXP(.((LAMBDA*TL)**ALPHA))
REL - 1-(CDF-CDFTL)
PREL n PREL*REL

30 CONTINUE

TD1P w (N-1)*RlP*PREL
TD2P m R2P*PREL
TDT1 a TD1P+TD2P
PREL = 1.ODO

DO 40 K w 2,N
DO 50 L - 1,K-1

IF (L .EQ. 1) THEN
TL = O.ODO
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ELSE
TL - T(1)-(T(L)-T(L-1))

END IF
CDFTL = l.EXP(.((LAMB3DA*TL)**ALPHA))
EEL a 1.(CDF.CDFTL)
PEEL - PREEL*EL

50 CONTINUE

TL - T(1-(T(K-T(-1))
CDFTL w l-EXP(-((LAMBDA*TL)**ALPHA))
FT m CDF-CDFrL
SUMDIP =SUMD1P+((K.1)*RIP*PREL*FT)
SUMD2C - SUMD2C+(E2C*PREL*FP)
PEEL m 1.ODO

40 CONTINUE

TDT2 * SUMDlP+SUMD2C+(R2C*CDF)
TDT = MTDT+TDT,2
PEEL - 1.ODO

DO 60 M 02,N
DO 70 P a 1,M-1

IF (P .EQ. 1) THEN
TL m 0.ODO

ELSE
TL - T(1).T(P)-TP-1))

END IF
CDFTL w -1EX(.((LAMBDA*TL)**ALPHA))
EEL - 1.(CDF-CDFTL)
PEEL m PREL*REL

70 CONTUTUE

A a T(l>(()-T(ýM-1))
CALL DQDAG(FF,A,B,ERRABS,ERRREL,IRULE,RESULT,

& ERREST)
ANSWER a ALLPHA*(LA1MBDA**ALPHA)*RESULT
TL - TZ1).T(M)TMM1))
CDFTL - I-EXP(.((LAMB3DA*TL)**ALPHA))
REL m 1.(CDF..CDF'PL)
ANSWER m ANSWER+(REL*(T(M)-T(M-1)))
STIME a STIME +(PREL*ANSWER)
PEEL w 1.ODO

60 CONTINUE

A a 0.ODO
CALL DQDAG (FFA,B,FRRABS,ERRREL,IRLTLE,

& RESULT,ERREST)
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ANSWER - (ALPHA*(IAMBDA**ALPHA)*RESULT) +
$ (SF*T(1))

UPTI x STIME+ ANSWER
END IF

AVAIL - UPTIME(UPTIME+TDT)
WRITE(30,104)N,T(N)AVAIL

20 CONTINUIE

104 FORMAT(10X.13,19XF6.1,17X,F8.6)
GOT099

C-
C POLICY II (AGE REPLACEMENT - WITH MINIMAL REPAIR)

200 CONTINUE
PRINT*,bR THE ESTIMATED VALUES FOR THE SHAPE

& PARAMETER ALPHA AND THE SCALE PARAMETER MU'S-- READ*APkA, MU
PRINT*,'ALPHA =',ALPHA,'MU = ',MU

PRINT*,EZNTER ESTIMATED VALUES FOR THE EXPECTED COST OF
& PREVENTIVE REPLACEMENT FOLLOWED BY THE EXPECTED
& COST OF MINIMAL REPAIR'
READ*,C2P,CIC
PRINT*,,EXPECTED COST OF A PREVENTIVE REPLACEMENT =

& ',C2P
& ,EXPECTED COST OF A MINIMAL REPAIR =
& ',Cic

PRINT*,'ENTER VALUES FOR THE EXPECTED DOWN.TIME OF
& PREVENTIVE REPLACEMENT FOLLOWED BY EXPECTED
& DOWNTIME OF A MINIMAL REPAIR'
READ*,R2P,RIC
PRINT*,'EXPECTED DOWNTIME OF A PREVENTIVE REPLACEMENT =
& ',R2P
& ,EXPECTED DOWNTIME OF A MINIMAL REPAIR =
& ',RIC

PR•IT*,'ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE'
READ*,LL,UL,STEP
PRINT,'LOWER LIMIT w ',LL,'UPPER LIMIT = ',UL,'STEP.
& ',STEP
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LAMBDA w 1.0D0/MU

PRINT*,DO YOU WANT TO INCLUDE SIMPLE PREVEN`TIVE
& MAINTENANCE-TYPE 1 FOR NO AND 2 FOR YES'
READ*,SPMREQ

GOTO (225,250),SPMREQ

C-
C POLICY II (AGE REPLACEMENT - WITH MINIMAL REPAIR WITHOUT
C SIMPLE PREVENTIVE MAINTENANCE)
C-- .... . .

225 CONTINUE

WRtITE(30,105)ALPHA,MU,C2P,ClCR2,R1C
105 F0RMAT(9X,TOLICY',xIr,2X,'(AGE REPLACEMENT WITH

& MINMAL',1X,'REPAIRYý,/,X,50('-'),//,
& 10XALPHA w 78F.1,17&= W6.1*
& 1OX'C2P - $',F7.1,12X,'C1C $f* .)
& 1OX,7R2 - ',F4.1,' HOURS,11X,'1C a7-1
& HOURS'//,5XEPLACEMEBNT,6X.COSr,IOXAPPROXIMATE',
& 8XXACVI/, WXAGE HOURSYq5X,'$/HOUR,9X,'
& AVAILABILITY', 4X,'AVAIIABILITYV,5X,11(V-),
& BX,7('.'),8X2C',X1(-)

DO 12 I1- 0,4000,50
B=DBLEWI
CALL DQDAG (EEAB,ERRABSERRREL,IRUIZRESULT,ERREST)
Al uDEXP(.(((LAMB3DA*B)**ALPHA)+(B/RlC)))
AA a A1+(RESULT*(1.OJXVR1C))
WRITE(13,*)B,AA

12 CONTINUE

REWIND (13)

DO 22 J w 1, NDATA
READ( 1,*)DATMAJ)YDATA(J

a222 CONTINUE

CALL DCSINTNDATAXDATA,YDATA,BREAKCSCOEF)
C
C Calculate the integral of the spline
C approximation.
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DO 82 K = LL,UL4STEP
B - DBLE(K)
NINTV - NDATA - 1
ANSWER = DCSITO(ABNINTVBREAK, CSCOEF)
ANSWER - ANSWER/(B+R2P)
AVAIL = (B-(R1C*((LAMBDA*B)**ALPHA)))/(B+R2P)
AVAIL1 = B/(B+R2P+(RIC*((LAMBDA*B)**ALPHA)))
COST = ((ClC*((IAMBDA*B)**ALPHA))+C2PY(B+R2P)
WRITE (30,106) B,COSTAVAILANSWER

82 CONTINUE
106 FORMAT(7XJF6.1,6X,F9.4,10X,F8.6,8X,F8.6)

GOTO 99

C POLICY II (AGE REPLACEMENT - WITH MINIMAL REPAIR AND
C SIMPLE PREVENTIVE MAINTENANCE)C-

250 CONTINUE

PRINT*,'BNTER THE EXPECTED COST OF A SIMPLE PREVENTIVE
& MAINTENANCE FOLLOWED BY THE IMPROVEMENT IN THE
& AGE IN HOURS ACHIEVED ON COMPLETION OF THE
& MAINTENANCE'
READ*,CIPoXX
PRINT*,'EXPECTED COST OF SIMPLE PREVENTIVE MAINTENANCE

& m ',CIP,
& 'IMPROVEMENT IN AGE(HOURS) = 'IX

PRINT*,TNTER THE NUMBER OF SIMPLE PREVENTIVE
& MAINTENANCE ACTIONS TO BE TAKEN IN A CYCLE'
READ*,NN
PRINT*,*;UMBER OF SIMPLE PREVENTIVE MAINTENANCE ACTIONS

& - N
PRINT*,IENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,

& STEP SIZE'
READ*,LL,UL,STEP
PRINT*,'XOWER LIMIT - ',LL,'UPPER LIMIT = ',UL,'STEP =

& ',STEP

WRITE(30,107)ALPHA,MU,C2P,CIC,CIP,XX,NN
107 FORMAT(9X,'POLICY',2X,'Ir,2X,'(AGE REPLACEMENT WITH

& MINIMAL REPAIR AND SIMPLE PM)
& '/,9X,65('-')//,
& 10X,'ALPHA - ',F3.1,17X,'MU a ,F.1,/
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& 1OX,'C2P = $',F7.1,12X,'CIC $=FTý
& 1OX,'C1P - $'F7.1,12XPTXX ',F6.1,' HOURS'/,
& 1OX,7.JO. OF SIMPLE PM = N)I
& 5X,'REPLACEMZNTs6X,'COSTrV, 5X,'AGE (HOLTRS)',5X,'
& $/HOUR' ,I5X,1 1('-'),6X,7('-'))

DO 6 J a LL,ULSTEP
B -.REAL(J)
xmxx
IF ((XB) .GE. 0) THEN

X.B
END IF

DO 71 m 0,NN-1
SUMI - C1C*(LAMBDA**ALPHA)*(((B+((B-X)*I))**ALPHA)

& - (((E.X)**ALPHA)*(I**ALPHA)))
SUM v.SUM+ SUMl

7 CONTINUE

COST - (SUM + ((NN-1)*C1P) +C2P) /((NN*B) +R2P)
LENGTH w B*REAL(NN)
WRITE(80,108)LENGTH,COST

108 FORMAT(3XF6. 1,5XF9.4)
SUM a 0.0

6 CONTINUE

G0 TO 99

C . . e ...... l... ------. nee

C POLICY III (AGE REPLACEMENT - WITH TWO TYPES OF FAILURE)
C..------.------e.-.-.--------

800 CONTINUE

PRINT*,'EN'TER THE ESTIMATED VALUES FOR THE SHAPE
& PARAMETER ALPHA AND THlE SCALE PARAMETER MU'
READ*,ALPHA,MU
PRINT*,'ALPHA .'A&LPHA,MU - ',MU

PRII4T*,MENTER ESTIMATED VALUES FOR THE EXPECTED COST OF
,& PREVENTIVE REPLACEMENT FOLLWE~D BY THE EXPECTED
& COST OF FAILURE REPLACEMENT, AND COST OF MINIMAL
& REPAIR'
READ',C2P,C2C,C iC

PRINT*,IEKPECTED COST OF A PREVENTIVE REPLACEMENT
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& ',C2P
& ,'EXPECTED COST OF A FAILURE REPLACEMENT =
& ',C2C
& ,EXPECTED COST OF A MINIMAL REPAIR =
& ',CIC

PRINT*,ENTER VALUES FOR THE EXPECTED DOWNTIME OF
& PREVENTIVE REPLACEMENT FOLLOWED BY EXPECTED
& DOWNTIME OF A FAILURE REPLACEMENT AND DOWNTIME
& OF MINIMAL REPAIR'
READ*,R2P,R2C,R1C
PRINT*,'EXPECTED DOWNTIME OF A PREVENTIVE REPLACEMENT -

& %wR2
& 'EXPECTED DOWNTIME OF A FAILURE REPLACEMENT ,
& 'J92C
& ,EXPECTED DOWNTIME OF A MINIMAL REPAIR
& 'fRlC

PRINT*,ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE'
READ*,LLULSTEP
PRINT*,'LOWER LIMIT - ',LL,'UPPER LIMIT = ',UL,'STEP

& ',STEP

PRINT**ENTER VALUES FOR THE PROBABILITY OF MINIMAL
& FAILURE AND MAJOR FAILURE'
READ*Pl,P2
PRIN4T*,THE PROBABILITY OF MINIMAL FAILURE = P1,

& AND PROBABILITY OF MAJOR FAILURE -'P2

PRINT*,ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE'
READ*,LL,UL,STEP
PRINT*,'LOWER LIMIT ',LL,'UPPER LIMIT - ',UL,'STEP "

& '%STEP

LAMBDA a 1.ODO/MU

WRITE(80,109)ALPHA,MU,C2P,C2C,C1C,R2P,R2C,R1C,P1,P2
109 FOIRMAT9X,'POLICY,2X,'Uir,2x,'(AGE REPLACEMENT WITH

& TWO TYPES OF FAILURE'/,9X,55('-')V/,
& $ 5X,'ALPHA a ',FS.1,11X,?dU - ',F6.1),
& 5X,'C2P m $',F7.1,6X,'C2C x $',F7.1,7X'C1C =
& $',F7.1/, 5X,'R2P = ',F4.1,' HOURS',5X,'R2C a
& ',F4.1,' HOURS',5X, 'RC = ',F4.1,' HOURS'/,5X,
& 'PROBABILITY OF TYPE I FAILURE = ',F8.1/,5X,
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& 'PROBABILITY OF TYPE II FAILURE =,F1/
& ,5X,!EEPIACENENIIV,BX,PCOST,10X,~APPROXIMATEI,8X,
& 'EXAC1Vý, 5X,`AGE (HOURS)',5X,'*/HOU~R,9X,'
& AVAILABILITY,4X,'AVAILABILITY,/,X,1 1('-'),
& 48(')X,2'', & 4X,12('-'))

DO 13 I - 0,4000,50
B.DBLE(I)

C CALL IMSL SUBROUTINE DQDAG

CALL DQDAG (F,ABIERRAB5,ERRREL,IRULE,RESULTERREST)

Al a DEXP(-((((LAMBDA*B)**ALPHA)*Pl)+(B/RlC)))
41 AA - A1+(RESULT*(l.OD0/RlC))

C OUTPUT THE AVAILABILITY AT TIME T TO FILE 13

WRITE(13,29)B,AA
29 FORMAT(1XF6.l,lSXF8.6)

13 CONTINUE

REWIN (13)

DO 43 J al1 NDATA
READ( l8,*)XDATA(J),`YDATA(J)

43 CONTINUE

CALL DCSINTNDATAXATAYDATA,BREAKCSCOEF)
C
C Calculate the integral of the spline
C approximation.

DO 33 K - LLUL,STEP
B a DBLE(K
NEMT m NDATA - 1
CALL DQDAG (0,A,BIERRABSERRREL,IRULESOLN,ERREST)
SF n DEXP(-(P2*((LAMBDA*B)**ALPHA)))
CDF a 1.ODO-SF
LENGTH w (R2P*SF)+(R2C*CDF)+SOLN
AVAIMl - SOLN/LENGTH

ANSWER - DCSITG<A,BNINTVBREAKCSCOEF)
AVAIL - ANSWER/LENGTH

CALL DQDAG (HA,B,ERRABS,ERRREL,IRtULEANS,ERREST)
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COST m (C1C*SF*(Pl*(LAMBDA*B)**ALPHA)) + (C2P*SF) +
& (C2C*CDF) + (ALPHA*P1*P2*CIC*(LAMBDA**
& (2.ODO*ALPHA)) SANS)

COSMIN m COST / LENGTH

WRITE (80,110) B,COSMINAVAIL1,AVAIL
33 CONTINUE
110 FORMAT(7XF6.1,6XF9.5,1OXF8.6,8XF8.6)

99 STOP
END

C-.............................
DOUBLE PRECISION FUNCTION E(T)
REAL*8 LAMBDAALPHA,T
COMMON ?HT/ LA.MBDAALPHA
EwDEXP(-((LAMBDA * T)**ALPHA))
RETURN
END

DOUBLE PRECISION FUNCTION EE(T)
REAL*8 LAMEDAALPHAToR1CB
COMMON /HT/ LAMBDAALPHA
COMMON /FT/ RICB
EE=DEXP(-((LAMBDA * B)**ALPHA)-((LANBDA*T)**ALPHA) +

& (B/R1C)
&.(T/RIC)))
RETURN
END

DOUBLE PRECISION FUNCTION F(T)
REAL*8 LAM3EDAALPA,TR1C,B,P1,P2
COMMON/7T/ R1CB
COMMON /H{T/ LAMBDAALPHA
COMMON/IT/ P1
COMMON /GT/ P24
F-DEXP(.((((LAMBDA * B)**ALPHA)*P1) -

& (((LAMBDA*T)**ALPHA)*P1)+(B/R1C) .(T/R1C) +
& (((LAMBDA*T)**ALPHA)*P2))
RETURN
END
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DOUBLE PRECISION FUNCTION FF(T)
REAL*8 LAMBDA,ALPHA,T
COMMON /HT/ LAMBDAALPHA
PFF(T**ALPHA)*(DEXP?(-((LAMBDA * T)**ALPHA)))
RETURN
END

DOUBLE PRECISION FUNCTION G(T)
REAL*8 LAMBDA,ALHA,T,P2
COMMON/GT/ P2
COMMON /HT/ LAMBDAALPHA
GuDEXP(.(P2*((LAMBDA*T)**ALPHA)))
RETURN
END

DOUBLE PRECISION FUNCTION H(T)
REAL*8 LAMBDA,ALPHA,TP2
COMMON/GT/ P2
COMMON /HT/ LAMBDA,ALPHA
H.(T**(2.ODO*ALPHA>.1.ODO)) *
& DEXP(.P2*((LAMIBDA*T)**ALPHA)))
RETURN
END
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POLICY 1 (AGE Rr\1. 1CEMENT)

ALPHA a 3.0 MU * 1390.0
C2P - $25000.0 C2C $: *37500.0
R2P - 8.0 HOURS R2C., 16.0 HOURS
MISSION DURATION = 24.0 HOURS

REPLACEMENT COST RATE AVAILABILITY MISSION RELIABILITY(G HOURS) (61HOTMn•) ,(A) ,. (R)

900.0 82.781 0.988898 0.977947
950.0 81.900 0.988565 0.975493

1000.0 31.178 0.988681 0.972916
1050.0 30.592 0.988752 0.970214
1100.0 30.123 0.988785 0.967391
1150.0 29.754 0.988786 0.964447
1200.0 29.472 0.988761 0.961383
1250.0 29.263 0.988718 0.958200
1800.0 29.115 0.988649 0.954899
1850.0 29.020 0.988571 0.951482
1400.0 28.968 0.988483 0.947951
1450.0 28.951 0.988389 0.944806
1500.0 28.962 0.988290 0.940549
1550.0 28.995 0.988191 0.936681
1600.0 29.043 0.988093 0.932704
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POLICY 1 (AGE REPLACEMENT WITH SIMPLE PREVENTIVE MAINTENANCE)

ALPHA - 3.0 MU = 1390.0
R2P a 8.0 HOURS R2C = 48.0 HOURS
RIP a 1.0 HOUR R - 0.1

NO. OF NTERVAL REPLACEMNT AGE (HO ) AVAILABILITY

1 917.6 0.979421
2 1743.4 0.982197
8 2486.7 0.983305
4 3155.6 0.983591
a 3757.7 0.983585
6 4299.5 0.983480
7 4787.1 0.983344
8 5226.0 0.983206
9 5621.0 0.983075

10 5976.5 0.982955
11 6296.5 0.982848
12 6584.4 0.982781
13 6843.6 0.982664
14 7076.8 0.982587
15 7286.7 0.982518
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POLICY II (AGE REPLACEMENT WITH MINIMAL REPAIR)

ALPHA = 8.0 MU = 1390.0
C2P = $25000.0 CiC ,w $37500.0
R2P = 8.0 HOURS RiC - 1.0 HOURS

REPLACEMENT COST APPROXIMATE EXACT
AGEMOUR $/HQUR AVAILABIIfl AVAILABILITY

1200.0 40.6693 0.992845 0.992847
1300.0 42.5667 0.993258 0.993261
1400.0 44.9682 0.993593 0.993595
1500.0 47.8289 0.9938862 0.993865
1600.0 51.1154 0.9940,16 0.994080
1700.0 54.8018 0.994245 0.994249
1800.0 58.8682 0.994374 0.994879
1900.0 68.2987 0.994469 0.994474
2000.0 68.0807 0.994532 0.994539
2100.0 73.2039 0.994569 0.994576
2200.0 78.6598 0.994581 0.994589
2300.0 84.4415 0.994571 0.994580
2400.0 90.5432 0.994540 0.994551
2500.0 96.9601 0.994490 0.994503
2600.0 103.6880 0.994423 0.994437
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POLICY III (AGE REPLACEMENT WITH TWO TYPES OF FAILURE

ALPHA - 3.0 MU = 1390.0
C2P = $25000.0 C2C w $37500.0 01c - $ 1000.0
R2P w 8.0 HOURS R2C w 24.0 HOURS RlC = 8.0 HOURS

PROBABILITY OF TYPE I FAILURE - 0.6
PROBABILITY OF TYPE II FAILURE - 0.4

REPLACEMENT COST APPROXIMATE EXACT
AGE(HOQ $/HOUR AVAILABILITY AVAILABILI

1018.0 27.30690 0.989570 0.988997
1042.0 26.88558 0.989629 0.989030
1066.0 26.49157 0.989678 0.989053
1090.0 26.12318 0.989718 0.989066
1114.0 25.77884 0.989749 0.989070
1138.0 25.45711 0.989772 0.989065
1162.0 25.15666 0.989787 0.989052
1186.0 24.87625 0.989794 0.989082
1210.0 24.61474 0.989795 0.989004
1234.0 24,37107 0.989789 0.988970
1258.0 24.14424 0.989778 0.988929
1282,0 23.93333 0.989760 0.988882
1306.0 23.78747 0.989737 0.988830
1330.0 23.55583 0.989709 0.988773
1354.0 23.38767 0.989677 0.988710
1878.0 23.23225 0.989639 0.6.88643
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"APENDIX B. DERIVATION OF COST RATE

AND AVAILABILITY FUNCTIONS

Let T be the time to faihre

(CI, T >tv

ThenaUCCI Cl, 1CfT'tl + Cg 1CT~t.,

*p CPEI~ - 1(tl,)] + C. Ptir(t,fl

+ ~,t, T >tv
*~L(

(g + T T 5t,

*ThenZl -[L] X EL T - t,3 P ET 20 y + 2 [L tI , P (T t: I! tp]

Now,

PC! St I Stl = PC! I t, T :s to

P ET S tpJ

( (t)

Then,

Therefore

Z[L] 3 + t,) I - 7 (t,) I + RI IfV(t,) I + f0 t dt
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0 Rp (I - I t)I+ Rg Er(tp) I + tp (I - r t)I+

f *0t.At) dt

0 Rc E - r t)I+ Re I (tp) I +. tp t,, r(tp I +

The integral ft' t fit) kt can be simplified by using

u dv m uv' - f v dui

then f'P t Ju) dt a 1t,,r) - f F(t)d

now EEL .N11 C-r(tpfl +36 CV(t.,)3 +t,- Jl'F!(t)dt

*v 3, L - (t1) I + 3 E C(t,) I + f~dt - f0 F(t) dt

E C - r (t1 1) I + R, CI (t.) + f9 p1 [- FQ)] ut

- 3, l - (t, + 34 3 r CIt.)] + m (tp,)

-'where m (t,) it1 FQt)J

'ECc
Now C,(tp)-

C, (Il - (t,) I + Cg PCI (t,)]

3, [I - F (t,) I + ReE CIt,) I + (1IP Ft)] dt
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Setting dC (tp) 0
dt,

we getc fer(t,,) fR - FRt)] dt - C, f (t,,) f0  1-F(t)] dt -

Cr [ (t,)3 I C. E rt,) I + C, CrV(t,) 12 - aE [1t,) I

-C, - C, (IV(t.) I + £ (t,) C3Scp - 3,CEJ

rearranging the terms we get

f (t) f[I ( - go]) dt (c, -c,,) - r (t,) (l. - r (tp) ) (c, -c,)-

C1 (I. - I %t,)) + f (t,) CIC, -~j

sinoe h(tv)
I1- F(m,)

C, + h (t,) CRICP -RA

and this simplifies to

(t,)f I'( I -FQt)Ad-F(t,) + h

Now

Mean life during a cycle
Availability A (t,) - xetdlngho yl
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f 0 [I -PAl(t,)j e*' A

Setting dh (t,)
a 0

We fitLl - PUN] dt + {I -t) + r ;c t.~)

limPllfying the equationi above we get,

A* + k ErCt,) I + Rp - 3CVt)

F (t,, f F[ (t)] ht - ,CVt) 3  I(tp)] + NCV(,,)3'

f[-F~f)]~ r (t,,) f t'1-t)d + f'i-FtJ )

-~ ~ f0 ci -F~t) a L( 1 v

Cancelling and rearranging the terms we get
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It (t,) r f"[- F~t)] dt JV[a - Pp] V - (tp) RL -,- 3,CIr(tp)3

+ P,C1r(.P)J I P. 31 . - ir(t,) I

and this can be simplified to

MgtC3 -3P(ý

Then

I F(t t,. )t? F

Rearanging the terms we have
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APPENDIX C. DESCRIPTION OF IMSL SUBROUTINE DODAG

QDAG/DQDAG (Single/Double precision)

Purpose: Integrate a function using a globally adaptive scheme based on

Gauss-Kronrod rules.

Usage: CALL ODAG (F, A, B, ERRABS, ERRREL, IRULE, RESULT,

ERREST)

Argumnts

F - User-supplied FUNCTION to be integrated. The form is F(X), where

X - Independent variable. (Input)

F - The function value. (Output)

F must be declared EXTERNAL in the calilnr program.

A - Lower limit of integration. (input)

B Upper limit of Integration. (Input)

ERRABS - Absolute accuracy desired. (Input)

ERRREL - Relative accuracy desired. (Input)

IRULE - Choice of quadrature rule. (input)

A Gauss-Kronrd rule Is used with

7 - 15 points if RULE - 1

10 - 21 points If IRULE - 2

15 - 31 points It IRULE - 3
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20 - 41 points if IRULE - 4

25 - 51 points if IRULE - 5

30 - 61 points If IRULE - 6

IRULE - 2 is recommended for most functions.

If the function has a peak singularity use IRULE - 1

If the function is oscillatory use IRULE - 6

RESULT - Estimate of the integral from A to B of F. (Output)

ERREST - Estimate of the absolute value of the error. (Output)

Notes

QDAG Is a general-purpose Integrator that uses a globally adaptive scheme

in order to reduce the absolute error. It subdivides the interval [A,B] and uses a

(2k + 1)-point Gauss-Kronrod rule to estimate the integral over each subinterval.

The error for each subintarval is estimated by comparison with the k-point Gauss

quadrature rule. The subinterval with the largest estimated error is then bisected

and the same procedure is applied to both halves. The bisection process is

continued until either the error criterion is satisaed, roundoff error is detected, the

subintervals become too small, or the maximum number of subintervals allowed

is reached.
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APPENDIX D. DESCRIPTION OF IMSL SUBROUTINE DCSINT

CSINT/DCSINT (Single/Double precision)

Purpose: Compute the cubic spline Interpolant.

Usage: CALL DCSINT (NDATA, XDATA, YDATA, BREAK, CSCOEF)

Arguments

NDATA - Number of data points. (input)

NDATA must be at least 2.

XDATA - Array of length NDATA containing the data point abscissas.

(input)

YDATA - Array of length NDATA containing the data point ordinates.

(Input)

BREAK - Array of length NDATA containing the breakpoints for the

pleoewlse cubic representation. (Output)

CSCOEF- Matrix of size 4 by NDATA containing the iocal coefficients of

the cubic pieces. (Output)

Notes

DCSINT computes the second derivative cubic spline interpolant to a set of

data points ();,y,) for I 1 ,2,...,NDATA - N. The breakpoints of the spline are the
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abscissas. Endpoint conditions are automatically determined by the program.

These conditions correspond to the "not-a-knot" condition, which requires that the

third derivative of the spline be continuous at the second and next-to-last

breakpoint.
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APPENDIX E. DESCRIPTION OF IMSL FUNCTION DCSITG

CSITG/DCSiTG (Single/Double precision)

Purpose: Evaluate the Integral of a cubic spline

Usage: CSITG(A, B, NINTV, BREAK, CSCOEF)

Argument

A - Lower limit of Integration. (Input)

B - Upper limit of integration. (Output)

NINTV - Number of polynomial pieces. (Input)

BREAK - Array of length NINTV+1 containing the breakpoints for the

plecewise cubic representation. (Input)

CSCOEF- Matrix of size 4 by NINTV+1 containing the local

coefficients of the cubic pieces. (Input)

DCSITG- Value of the Integral of the spline from A to B. (Output)

Notes

DCSITG evaluates the Integral of a cubic spline over an Interval. A cubic

spline is a plecewlse polynomial of order 4.
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